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uSiNg RAilwAy SimulATioN AS A bASiS foR 
iNfRASTRuCTuRe PlANNiNg – foCuSiNg oN 
STRuCTuRAl ChANgeS AT TRAiN STATioN exiTS 
Katalin Jurecka
Vienna University of Technology, Institute of Transportation, Austria

Abstract

Railway simulation is a powerful tool for answering numerous questions in railway network 
planning and analysing. The aim of this article is to show the importance of railway simulation 
used for analysing different design solutions. Special focus in this article is given to the gra-
dient design of existing train station exits. The main question is, whether structural changes 
result in a significant advantage in running time and capacity, compared to the existing track. 
The results of the simulation shall confirm the expected anticipation that can be applied 
in future railway route design. Without running a simulation it is not possible to prove the 
assumptions before investing huge amounts into the infrastructure.
To perform the simulation, a graph model of a typical train station exit was developed based 
on a real case study in co–operation with Austrian Federal Railways (Öbb), using the software 
programme OpenTrack (by OpenTrack Railway Technology Ltd., Switzerland). OpenTrack has 
three input components: infrastructure, rolling stock and timetable. All these three compo-
nents varied to various test gradients, freight trains and operation modes in order to identify 
the most suitable gradient transition form out of different variants. The results show that 
depending on the operation mode and the position of the signals, opposing variants have to 
be preferred although there are only minor differences in running time between the structural 
variants. In conclusion, railway simulation is a suitable method to compare different variants 
and especially in this case a study to confirm the expected results.

Keywords: railway simulation, gradient design, running time analysis,  
minimum headway time, maximum drawbar force

1 Introduction

Gradient design is an important part of the railway route study. The focus of this article is on 
the gradient design of existing railway tracks, especially of existing train station exits. The re-
sults shall be applied in future railway route design. The main question is, whether structural 
changes can lead to a substantial advantage in running time compared to the existing track. 
Therefore, a simulation model of a train station exit has been developed, based on a real case 
study in co–operation with Austrian Federal Railways (Öbb).

7–9 May 2012, Dubrovnik, Croatia
2nd International Conference on Road and Rail Infrastructure
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2 Simulation model

2.1 Infrastructure

The analysed structural changes are shown in Fig. 1. The figure presents the existing track 
(variant b), as well as two new tracks based on structural changes (variant A and C). The 
analysed section has a length of 11,1 km. The end of the station area is both: the position of 
the exit signal and the position of the first gradient change. The length shown in Fig. 1 and the 
positioning of the signals are based on the formerly mentioned real case study. The influence 
of the lengths has been examined as part of a sensitivity analysis.
The model of the train station exit has two characteristic gradients. One is the gradient in the 
station and one is that on the free track. The gradient in the station area is fixed throughout 
all simulation runs with 3 ‰. For the free track, five different gradients have been chosen. 
These gradients represent the inclination of different mountain railway lines and vary from 
8,5 ‰ to 26 ‰. In Austria, for the construction of new railway lines the gradient is limited at 
8 ‰ but can be exceeded according to the infrastructure operator [1]. Existing main railway 
tracks in Austria have gradients up to 31 ‰ [5]. In sections, the largest gradient used in this 
simulation is 28 ‰.
In this article, particular attention is given to the gradient of 10 ‰. The four other gradients 
(8,5 – 12,5 – 18,0 – 26,0 ‰) have been examined [4], but the results are not shown in this 
article, as there is no significant difference to the results of the chosen gradient. The gradient 
difference between the variants A, b and C is set as 2 ‰. The influence of the altered gradients 
has also been examined as part of the sensitivity analysis.

Figure 1 Train station exit in the longitudinal section

2.2 Rolling stock

For this simulation, three different freight trains have been selected. All selected freight tra-
ins have the same type of locomotive with the technical characteristics listed [4], but are not 
shown here. The freight trains differ in their trailer load. Therefore, the number of locomotives 
used depends on the trailer load, the gradient and operational rules from Öbb. In this model, 
the freight trains have up to two locomotives. The length of the freight trains depends on the 
trailer load as well. Table 1 gives the trailer length using an average trailer load of 4 tons per 
meter.
Fig. 2 shows the tractive effort/speed diagram for the selected locomotive in case of single 
as well as double traction. For double traction the maximum drawbar force is the limiting 
factor, with a maximum drawbar force of 450 kN due to restrictions given by the infrastructure 
manager.
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Table 1  Characteristic values of the chosen freight trains and schedule

freight train 
name

number of 
locomotives

trailer 
load

trailer length departure time 
station A [hh:mm]

F.1.1000
F.1.1600
F.2.2000

1
1
2

1000 t
1600 t
2000t

250 m
400 m
500 m

08:00
08:10
08:30

Figure 2 Tractive effort/speed diagrams: single traction (left), double traction (right)

2.3 Timetable

The freight trains operate according to the schedule. They depart at station A one after the 
other at fixed times. However, the differences in time between the departures are not given by 
minimum headway times, but are only set to make sure that the trains do not influence each 
other. The trains have no stop at station b, therefore there is no set arrival time.
2.4 Simulation

In order to evaluate the influence of structural changes on the running time, a simulation 
has been carried out. The simulation has been performed by using the software programme 
OpenTrack. All data on infrastructure, rolling stock and timetable is defined by the user and 
is processed in the software programme. The software programme calculates the train move-
ment per second, e.g. acceleration, speed, traction and resistance [3]. At gradient transitions, 
the software programme calculates the average gradient over the length of the train. Finally, 
different diagrams can be displayed by the software to evaluate the results of the simulation 
– e.g. distance/time, speed/distance, and acceleration/distance. 
Each freight train is examined in three different operating modes that are as followed: 
1 The train starts at station A and drives towards station B.
2 The train starts at station A and has an unscheduled stop at first block signal and then 

continues towards station B. This only occurs if a previous train reserves the second block.
3 The train passes through station A towards station B.

The influence of the chosen length on the results is examined as part of the sensitivity 
analysis. For this reason, both the values of length and the gradient difference between the 
variants A, b and C have been doubled.
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3 Results

For each operation mode, the following diagrams display the results in the figures below:
 · distance/time
 · speed/distance
 · running time
 · minimum headway time

3.1 Operation mode 1: starting

All freight trains start at station A and accelerate unlimitedly until they reach either the maxi-
mum track speed or the end of the track (Fig. 3). At the gradient transitions (variants A, b 
and C), the difference in speed is displayed but at the end of the track there are only minor 
differences in speed (less than 1 km/h).
The running times of the different freight trains roughly vary from 9 to 13 minutes (Fig. 4). The 
shortest running times can be achieved in variant C. The difference in running time between 
variant A, b and C is only in the range of seconds. 

Figure 3 Speed/distance diagram (left) and distance/time diagram (right) for operation mode 1

The minimum headway times depend on the release time of the block signal at km 3,6 – that 
is the position of the second block signal on the free track. Fig. 3 shows the distance/time 
diagram with the blocking time stairway that represents the operational usage of the railway 
track. The blocking time ends after the train has left the section and all signalling appliances 
have been reset to normal position [2].

Figure 4 Running times (left) and minimum headway time (right) for operation mode 1

3.2 Operation mode 2: stop at first signal

In this operation mode, all freight trains start at station A and accelerate until they need to 
stop at the first block signal. After the stop, the trains start at a specified time and accelerate 
again until they either reach the maximum track speed or the end of the track (Fig. 5). At the 
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end of the track, there are only minor differences in speed between the variants A, b and C 
(less than 1 km/h).
The running times of different freight trains roughly vary from 11 to 17 minutes (Fig. 6). The 
duration of the stop is not relevant and therefore not included in these results. On one hand, 
the shortest running times before the stop can be achieved in variant C. On the other hand, 
the shortest running times after the stop can be achieved in variant A. Because the differen-
ces between variant A, b and C, in these two sections, are only in the range of seconds the 
data is not shown in detail. Fig. 6 shows the sum of the running times of both sections. Both 
together, variant C is the fastest for the freight train F.1.1000 whereas variant A is the fastest 
for the other two freight trains. The difference in running time between variant A, b and C is 
only in the range of seconds.

Figure 5 Speed/distance diagram (left) and distance/time diagram (right) for operation mode 2

The minimum headway times depend on the release time of the block signal at km 3,6. A train 
that has no stop at the signal follows the train that stops at the first block signal. Fig. 6 shows, 
that the minimum headway times vary from 4 to 6 minutes. The shortest minimum headway 
times can be achieved in variant C. The differences in minimum headway time between vari-
ant A, b and C are only in the range of seconds.

Figure 6 Running times (left) and minimum headway time (right) for operation mode 2

3.3 Operation mode 3: pass–through

In this operation mode, all freight trains enter station A on the main track with the maximum 
track speed of 100 km/h. For the freight trains F.1.1000 and F.2.2000, there is no difference 
between variant A, b and C because they can hold the maximum track speed. Whereas the 
freight train F.1.1600 is not able to hold the maximum track speed and continuously slows 
down (Fig. 7). At the end of the track, for the train F.1.1600 there are only minor differences in 
speed between the variants A, b and C (less than 1 km/h).
The running times of the different freight trains vary from 06:40 to roughly 07:30 minutes (Fig. 
8). The shortest running times can be achieved in variant A. The difference in running time 
between variant A, b and C is only in the range of seconds.
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The minimum headway times depend on the release time of the block signal at km 3,6. The 
train that passes through station A is followed by a train that starts at the exit signal from the 
sidetrack. Fig. 8 shows, that the minimum headway times are roughly 2,5 minutes. The diffe-
rences in minimum headway time between variant A, b and C are only in the range of seconds.

Figure 7 Speed/distance diagram (left) and distance/time diagram (right) for operation mode 3

Figure 8 Running times (left) and minimum headway time (right) for operation mode 3

3.4 Sensitivity analysis and energy consumption

A sensitivity analysis has been performed to examine the influence of the values of length 
and of the altered gradient on the result. For this reason, both the values of length and the 
gradient difference between the variants A, b and C are doubled. The sensitivity analysis is 
conducted only for operation mode 1.
The freight trains run similarly to the result of operation mode 1. The running times differ from 
the result of operation mode 1 only in seconds. Therefore, the results are not shown in detail. 
As with operation mode 1, the shortest running times can be achieved in variant C. Further-
more, the differences in running time between variant A, b and C are still only in the range 
of seconds. Because there is no significant difference to operation mode 1, the minimum 
headway times are not shown.
As the results of the simulation show only minor differences in running time and speed, it can 
be assumed that there are also only minor differences in the energy consumption. The results 
of the simulation confirm this assumption, based on the calculated energy consumption of 
each course by the simulation software.
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4 Discussion

The results show that depending on the operation mode, different structural variants have 
to be preferred. For example, the results for operation mode 1 are in contrast to the results 
for operation mode 2. For operation mode 1, variant A provides the shortest running times. 
Whereas, for operation mode 2, shortest running times are provided by the variant C. For this 
operation mode, it is important to consider the position of the first block signal. In this exam-
ple, the length between the last gradient change and the first block signal is shorter than the 
lengths of the freight trains. That means that the freight trains are standing on the gradient 
change while they are waiting at the block signal. In this case, the software program calcula-
tes the average gradient over the train length. So for operation mode 2, the shortest running 
times after the stop are provided at variant A because this variant has the lowest gradient in 
this section. For this operation mode, variant C would only provide the shortest running times 
if the signal position would be changed according to the train length.
The results of the freight train F.1.1000 are related to the results of the freight train F.2.2000. 
This is because, for the freight train F.2.2000 both the load and the number of locomotives 
of the freight train F.1.1000 are doubled. But due to the limit for the maximum drawbar force 
for double traction at 450 kN, the freight train F.2.2000 cannot use the entire traction power 
provided by the engines.

5 Conclusions

The results can be summarised as follows: There are differences in running time and speed 
between the three variants, but these are only minor differences. The results clearly show 
that depending on the operation mode, different structural variants have to be preferred. 
Also the position of the signals has an essential impact on the results. As a consequence, the 
interaction between railway line design and operation is important and should be considered 
in the design process.
Generally, an unscheduled stop on the free track should be avoided – especially a stop in a 
section with a rather steep gradient. This can be done by application of a train control system 
that displays not only the maximum track speed but also the recommended track speed for 
the following block section.
The results show that variant A is the best variant not only for operation mode 1 but also for 
operation mode 2 if the signal position is changed respectively. To conclude, the existing 
variant is still a rather good solution if the quality of operation cannot be guaranteed.
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