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Abstract

Bridges are an essential component of the train and vehicle traffic network. Increasing traffic 
loads, the demand for faster transit speeds and the possible influences of weather effects 
drive the need to evaluate existing bridges that in some cases have been in use for decades. 
The existing construction documentation is not always sufficient to obtain reliable statements 
about e.g. the remaining useful life or changing utilization conditions. Suitable metrological 
methods combined with calculation models allow these tasks to be resolved.

Keywords: bridges evaluation, metrological methods, short–term measurements,  
long–term monitoring

1 Introduction

The Deutsche Bahn (DB) alone is responsible for approx. 28,000 railway bridges with diverse 
structural designs. Bridges age and fatigue differently depending on their construction. Even 
identically designed bridges evidence different behaviors as e.g. climatic conditions on site 
may vary. Deutsche Bahn generates calculation reviews at various levels, in compliance with 
Guideline 805 [1]. This frequently means a measured-value supported calculation review in the 
case of complex bridge structures [2]. The measured values, with which the calculation models 
are calibrated, are provided by short-term measurements with resulting loads from standard 
traffic or defined special loads. The real system behavior can be acquired easily by measure-
ments on the object. Short-term measurements highlight weak points and safety deficits. Long-
term measurements depict the behavior of the bridge under load collectives which include, 
e.g. in addition to traffic loads, wind forces, temperature fluctuations and other influences.

2 Short–term measurements for measuring system behavior on bridges

Static or dynamic short-term measurements as per Module 805.0104 (DB) are classified as follows:
 · System measurements under defined operating loads for steel railway bridges;
 · Experimental load-bearing evaluation (concrete constructions with high non-linear load-
bearing behavior);

 · Special measurements to clarify the behavior of e.g. moving bridges.

A bridge under investigation is experimentally evaluated with both general train traffic loads and 
traffic with some extent significantly higher loads. The necessity of increased loading is often 
justified by the aim of obtaining a measurable construction reaction (strains, curvature, shifts, 
inclinations, accelerations, etc.). The loads however are only located in the elastic deformation 
behavior of the construction and are specified by the bridge evaluator/structural engineer. He 
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also defines the number and type of measurement points in the respective measurement cross-
sections and the type of dynamic load by e.g. defined crossings of vehicles at different speeds. 
In this method, the number of measurement points can lie between double figure and several 
hundred applications. The duration of the measurement is frequently limited to just hours (closing 
sections; provision of load testing vehicles; special wagons). This defines the requirements for the 
measurement technology through the dynamic and simultaneous acquisition of measured values. 

Figure 1 Schematic representation of the applied loads during a system measurement

3 Measuring the system behavior on the  
Fehmarnsund Bridge (Example Project) 

3.1 Application and requirements

Arising from the discussion and the initial constructional proposals for the building of the 
Fehmarn Belt link (Fig. 2 – red arrow) from the Fehmarn Island (Germany) to Denmark, the 
Fehmarnsund Bridge (Fig. 3), which was built in 1963, was also subject to a new evaluation. 
This network arch bridge, located to the south of the planned Belt link (yellow arrow), will 
experience significantly greater use with a direct traffic connection, both in terms of traffic 
density and with regards to the forecast traffic load.

Figure 2 Geographical location Figure 3 Network arch bridge (since 
1962), Fehmarn Belt Bridge
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The system behavior measurements between 11 and 14 June 2010 were intended to determine 
whether the structure could meet these requirements. The assessment of the resulting measure-
ment results is not a part of this document. The basis of the assessment is the evaluation level 
4 of the Guideline 805 and the evaluation guideline of the Federal Highway Research Institute. 
Numerous measurements with various loads were necessary on the road and on the rail tracks 
for calibrating the complex calculation models. The measurement program was agreed with 
the structural engineer group of the DB-Projektbau [3]. 

3.2 Measurement program

 

Figure 4 Measurement locations and corresponding measurement sections

It was agreed with the structural engineers that two measurement locations (ML I and ML II), 
with corresponding measurement sections, should be defined (Fig. 4). ML I comprises two fi-
eld sections and a support section. ML II is located on the network arch bridge superstructure 
and has two measurement sections.

3.3 Type and installation of the transducers

Sensors were installed at 251 locations representative of the bridge statics to acquire diverse 
bridge construction deformation parameters under cyclical stresses. The specified measuring 
points were installed in the period from April to June 2010. The specific number of measuring 
points was based on the use of strain gauges (SGs) in an SG full-bridge circuit. The strain to 
be measured as reaction to the applied loads is acquired in a full-bridge branch (component 
expansion + temperature expansion, Fig. 5). 
This quarter branch is connected with three passive SG to form the full bridge circuit. These 
passive SG do not experience any component expansion caused by applied loads like the SG 
in the quarter branch, but they acquire the resulting temperature expansions. 
This circuit type significantly minimizes the acquisition of temperature-dependent strains 
so that only component strains in correlation to traversing events are acquired. The SG full 
bridge circuit type enables electrical connection to the downstream measurement electro-
nics in a 6-wire circuit. Cable effects which could result in metrological errors, caused e.g. by 
temperature influences on long cables, are compensated for by the electronics here via two 
additional sense leads.
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Figure 5  Strain gauge installation 

3.4 Measurement data acquisition

Data acquisition systems were installed decentralized for measurement data acquisition, 
storage and transfer. Due to the dynamic acquisition of the measured values, the decentra-
lized installed data acquisition systems (HBM QuantumX and MGCplus) and the main con-
trol room (Fig. 6) were connected with fibre-optic cables for NTP data synchronization and 
controlling the measurement system. The dimensions of the measurement layout itself and 
the complexity of the measurement task can also be indicated by noting that the use of fibre-
optic cables replaced 60 km of electrical connection cables that would have otherwise been 
necessitated. 

Figure 6 System architecture
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3.5 Measurement implementation

Appropriate test loadings on the Fehmarnsund Bridge were implemented with locomotive 
units and additional heavy truck transports between 18:00 to 06:00 each night between 
11.06. to 14.06.2010.

3.5.1 Quasi-static transits of heavy-load vehicles
Two heavy-load vehicles (Fig. 7) were used for transits in 4 different lanes (axis load 12t / 20t) 
at speeds v = 10 km/h and a vehicle distance of approx. 10 meters.

3.5.2 Locomotive train transits
The locomotive unit (Fig. 8) comprised a group of 2 x BR232 and 8 x BR155. The total mass was 
123t with an average wheel set load of 22.5t for a BR 155 locomotive. The basic load position 
resulted in a vehicle mass of 6.276 t/m.

Figure 7 Heavy transporter with 120t additional load Figure 8 Load train comprising 10 locomotives

3.5.3 Combined transits
In this part of the measurement program, combined transits of locomotive units and he-
avy transporters on the routes were implemented with different travel directions and load 
patterns.

3.5.4 Dynamic measurements
Dynamic transits were implemented at maximum speeds for the locomotive units of approx. 
120 km/h and approx. 80 km/h for the heavy transporters. The measurements were triggered 
by light barriers positioned at suitable points.

3.5.5 Measurement results (example)
Fig. 9 shows an example of the mechanical stresses acquired during parallel transits of loco-
motive units and heavy transporters during one of the implemented measurements.
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Figure 9 Stress ratios on five field continuous girder – Field center of first field transverse beam Section 2 
(guide barrier) with parallel transit of locomotive unit and heavy transporter at measurement point 1 
to scale copied comparison (ICE standard traffic)

4 Long–term monitoring on bridges 

Long-term measurements provide statements about the resulting stress collectives of a 
structure under the influence of standard traffic, in combination with all other physical influ-
encing factors on the structure that do not e.g. occur in short-term measurements. Structural 
health monitoring detects changes in time and helps to avoid accidents. The measurement 
data shows how structural components interact under real loads. The know-how thus obtai-
ned delivers important information for the maintenance of existing bridges and for the deve-
lopment of innovative construction methods. Monitoring is useful when the investment volu-
me only permits a limited number of new structures per time unit, where historical structures 
need to be maintained and continue to be used, and where special constructions require 
permanent monitoring.

Figure 10 Permanent monitoring of resulting mechanical stresses on a DB auxiliary bridge, comparing stress 
of passenger and freigth trains
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Figure 11 Typical design of a long-term monitoring system (data transfer) of the DB in cooperation with HBM

5 Long–term monitoring for remaining life statements –  
Status and prospects

The basic requirement for measurement technology-supported statements about the remai-
ning service life of a construction (bridge) is the availability of reliable load data from the past.
In part, these can be calculated on the basis of available documents about train loads and 
the number of trains or projected using information available about loading situations with 
reference to defined time periods. If such data is not available, it is not possible to make sta-
tements about the remaining useful life! Challenges are not only posed by changing climatic 
conditions, but also with regards to protection against vandalism and theft, if future solutions 
are to have a direct influence on standard traffic and the utilization analysis of railway bridges.

Aim of existing pilot projects:
 · Long-term stability and durability of sensors and subsequent electronics;
 · (e.g. endurance strength/protection of sensors against weather, overvoltage protection, etc.);
 · Maintenance free overall system/secure remote data transfer;
 · Remote configuration and analysis option; 
 · Redundancy at measuring points/if necessary, different measurement principles/preven-
tion of false alarms;

 · Automatic restart after failure;
 · System power supply requirements in inaccessible areas (220V mains power supply; avai-
lability of data network, etc.);

 · Data pre-processing / compression (no GBs or TBs of raw data);
 · Protection against environmental influences vandalism (human and animal);
 · Determination of fewer, but more meaningful measurement points per bridge;
 · Safe data transmissions; possible data reduction;
 · Specification of limit values for warning and alarm stages;
 · Appropriate procedures when warning and alarm stages are reached.

There are series of approaches, particularly in the Asian region of installing long-term moni-
toring systems directly during construction (enormous mechanical stress) and/or as of the 
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commissioning of a new bridge. Knowledge about the loads to be expected, etc. is necessary 
here in order to e.g. install sensors at load-relevant points. In particular, experiences gained 
from the system measurements are the basis for the first long-term measurements installed 
by DB in order to e.g. drastically reduce the number of measurement points and to determine 
the appropriate system architecture. 
In contrast to short-term measurements (system measurements), long-term measurements 
also have increased requirements for e.g. the long-term stability of sensor components as 
well as secure data preprocessing and remote data transmission. The existing test projects 
very clearly show that there is still some need for expenditure in the sector of R&D as well 
as for further relevant long-term tests. There is also a need for further developments to be 
implemented by the measurement technology supplier, while the user (DB) also needs to set 
out appropriate specifications and standards. The standardization methods that currently 
exist and those which are in process of being created by the railway can also be guides in 
other sectors, e.g. in the sector of road bridges.
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