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impacts of autonomous vehicles on 
the urban fundamental diagram

Qiong Lu, Tamás Tettamanti
Budapest University of Technology and Economics, Faculty of Transportation Engineering 

and Vehicle Engineering, Department of Control for Transportation and Vehicle Systems, 

Hungary

Abstract

In recent years, self-driving cars are being introduced to streets, which generated signifi-
cant attention and discussion. The widespread adoption of autonomous vehicles (AV) brings 
changes in several fields. One of the most exciting changes is presented by the effect that 
driverless cars bring to the well-known traditional traffic model, the Macroscopic Fundamental 
Diagram (MFD). This is a key issue as MFD is a basic model for strategic traffic planning and 
also for real-time traffic control. In this paper therefore the impacts of autonomous vehicles 
that are relevant to the urban MFD are investigated through traffic simulation. The paper seeks 
the answer to a basic question, i.e. how the different percentage of autonomous vehicles 
among traditional vehicles and the autonomous driving levels influence the urban MFD. A 
detailed simulation study was carried with SUMO (microscopic traffic simulation software) 
in an artificial grid network.

Keywords: autonomous vehicles, percentage, autonomous driving levels, fundamental 

diagram, urban traffic, SUMO

1 Introduction

In our days and in the near future connected and automated vehicles transform our traditional 
transportation systems (SAE International, 2014; Szigeti et al., 2017). Therefore, the impact 
of autonomous transport must be properly investigated as it directly influences the traffic 
dynamics, the applicable control, as well as the methodologies for traffic network analysis 
and planning [1, 2].
An autonomous vehicle (AV) by definition is a vehicle that is capable of sensing its envi-
ronment and navigating without human input. Based on the amount of driver intervention 
and attentiveness required, the autonomous driving is classified into six different levels by 
the Society of Automotive Engineers (SAE) international. The SAE international delivered a 
harmonised classification system for Automated Driving Systems (ADS), specifically SAE J3016 
Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving 
Systems (see Table 1) [3].
Experience with the availability and deployment of previous vehicle technologies can be 
used to forecast the AVs implementation. The penetration of driverless cars depends on both 
availability and user acceptance of the technology. Based on some widely accepted basic 
principles [4], six scenarios with different penetration in each autonomous driving level are 
studied in this paper.
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Table 1  The levels of automation defined in SAE J3016 [3]

Level 0
No automation

The full-time performance by the human driver of all aspects of the dynamic driving task, 
even when enhanced by warning or intervention systems

Level 1
Driver 
Assistance

The driving mode-specific execution by a driver assistance system of either steering or 
acceleration/deceleration using information about the driving environment and with the 
expectation that the human driver performs all remaining aspects of the dynamic driving task.

Level 2
Partial 
Automation

The driving mode-specific execution by one or more driver assistance systems of both 
steering and acceleration/deceleration using information about the driving environment 
and with the expectation that the human driver performs all remaining aspects of the 
dynamic driving task.

Level 3
Conditional 
Automation

The driving mode-specific performance by an automated driving system of all aspects 
of the dynamic driving task with the expectation that the human drivers respond 
appropriately to a request to intervene.

Level 4
High 
Automation

The driving mode-specific performance by an automated driving system of all aspects 
of the dynamic driving task, even if a human driver does not respond appropriately to a 
request to intervene.

Level 5
Full 
Automation

The full-time performance by an automated driving system of all aspects of the dynamic 
driving task under all roadway and environmental conditions that can be managed by a 
human driver.

The Macroscopic Fundamental Diagram (MFD) of traffic flow is practically a set of diagrams that 
gives relationships among the traffic flow Q (vehicles⁄h), the traffic density ρ (vehicles⁄km) and 
the space mean speed V (km⁄h) [5]. The MFD can be used to define the capacity and thus the 
service level of a road system. Moreover, the MFD describes traffic dynamics when applying 
inflow regulation or speed limits. Fundamental diagram consists of three different (two dimen-
sional) graphs: flow-density, speed-flow, and speed-density. All the graphs are related by the 
fundamental equation:
 � � � �Q V� � �� � (1)

The fundamental diagram can be derived by plotting of field data points and using appro-
priate curve fitting to the scatter plots. MFD can also be applied for urban or metropolitan 
areas as proposed by [6]. The concept of urban MFD has been widely investigated during the 
past decades, e.g. [7-10]. The aim of this work is to study the potential impact of autonomous 
vehicles on the classical urban MFD.

2 Method

In this research, there are two main parameters to investigate in relationship with the funda-
mental diagram, i.e. the impact of penetration (percentage of AVs in the whole traffic flow) 
and autonomous driving level. The work has been carried out with SUMO microscopic traffic 
simulation software by using different car types and percentages. The simulations were run 
in a grid network considering each group of these new parameters. The traffic volume of the 
links as well as the throughput of the whole network were measured in the simulator virtually. 
All measures of the MFD can be obtained from SUMO’s edgeData which represents macros-
copic link-level measurement practically. The results were evaluated in order to understand 
the evolution of the different scenarios and reveal the relationships between network capa-
city, percentage of autonomous car as well as autonomous driving level. Regarding the MFD, 
network-level and link-level fundamental diagram can be distinguished, both by using Eq. (1). 
The first one models the throughput of the traffic network per hour:

 � �N a
Q (2)
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Where Q
N
 is the number of vehicles that pass the network. ρ

a
 is the average density of the 

network, and it simply equals to the known total number of vehicles in the network divided 
by the total link kilometres of the road network, i.e.
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Where l
i
 is the length of link i, n is the number of links [5,10]. The second approach interprets 

the MFD of one single road link of the network, i.e.
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Where Q
i
 is the flow, ρ

i
 means the density, V

i
 (ρ

i
) defines the mean velocity, and Q

i
 is the flow 

on link i. In our work, fundamental diagrams were modelled as polynomials. Thus, the points 
of the simulation results were approximated with cubic polynomial curve fitting (the fitting 
curve was constrained to cross the original):

 � �Q a b c
3 2 (5)

Where a, b, c are polynomial coefficients.

3 Simulation study and evaluation

In order to analyse the effect of automated and autonomous technology a detailed simulation 
study was carried with SUMO microscopic traffic simulator.

3.1 Network setup and scenarios

As shown in Fig. 1, a grid traffic network was constructed, designed to represent common si-
tuation on the urban road network. The applied network was an 8×8 grid, i.e. 64 intersections 
in the network. The length between adjacent node was 500 meters. The network edges were 
bidirectional road links with single lanes. A traditional “time gap based” traffic signal met-
hod was applied (built-in tool of SUMO [11]). This control scheme switches to the next phase 
after detecting a sufficient time gap between successive vehicles in order to achieve a better 
distribution of green-time among phases dynamically [12].

Z
���� � Grid test traffic network
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As the aim of this work is to investigate potential impacts of driverless cars on road network 
performance, a straightforward approach to autonomous vehicles fleet penetration has been 
taken. This is based upon some basic principles that are widely accepted:

 • at low market penetration, technical capability is limited (for example, to driver assistance 
which mean low autonomous driving level);

 • as market penetration increases, consumer confidence also augments and better use of 
connected and automated technology prevail [4].

Fig. 2 shows an example projection for the increasing technical capability of AVs overtime. 
Technological change is usually marked by early adopters prior to full saturation. The scenari-
os for AV deployment should reflect this. Measurements in one link and in the whole network 
were realized. The modelled scenarios are summarised in Table 2.

Figure 2 Future states of availability and user acceptance [4]

Table 2  The scenarios used in this simulation

Scenario 
nr.

Scenarios Ratio of 
traditional cars

AV penetration composition

Level 1 Level 2 Level 3 Level 4 Level 5

1 Base 100 % 0 % 0 % 0 % 0 % 0 %

2 25 % penetration 75 % 15 % 5 % 5 % 0 % 0 %

3 50 % penetration 50 % 25 % 10 % 10 % 5 % 0 %

4 75 % penetration 25 % 25 % 20 % 15 % 10 % 5 %

5 100 % penetration 0 % 15 % 20 % 20 % 25 % 20 %

6 Upper bound 0 % 0 % 0 % 0 % 0 % 100 %

3.2 Autonomous vehicle modelling methodology

Default SUMO parameters have been modified in order to model a plausible future for AVs. 
In this paper, the default car following model was applied (Krauss Model). The parameter 
selection is related to longitudinal movement, acceleration, deceleration and gap acceptan-
ce. These behaviours are formalised as parameters in the car-following model of SUMO. The 
implemented model follows the idea as that let vehicles drive as fast as possibly while main-
taining perfect safety (always being able to avoid a collision if the leader starts braking within 
leader and follower maximum acceleration bounds). The following list shows the editable 
parameters of the Krauss Model:
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 • Mingap: the offset to the leading vehicle when standing in a jam (in m).
 • Accel: The acceleration ability of vehicles of this type (in m/s2).
 • Decel: The deceleration ability of vehicles of this type (in m/s2).
 • Emergency Decel: The maximum deceleration ability of vehicles of this type in case of emer-
gency (in m/s2).

 • Sigma: The driver imperfection (between 0 and 1).
 • Tau: The driver’s desired (minimum) time headway (reaction time) (in s).

For level 0 the default values were taken for all parameters. But the emergency deceleration 
was set to 8 m/s2. This value is based on the study of [13]. For other autonomous driving levels, 
the deceleration and the emergency deceleration remained the same, considering the safety.
For the level 2 and level 5, the mingap, acceleration, time headways were taken from [4]. For 
level 1, the values of these items were set as the average value of level 0 and level 2. For the 
level 3 and level 4, the values of these items were changed linearly between level 2 and level 
5. The driver imperfection for level 5 and level 4 was set to 0, because these levels do not need 
human driver’s intervention. It was assumed to be 0.4, 0.3 and 0.2 for level 1, level 2 and level 
3, respectively. The parameters for all levels are tabulated to Table 3.

Table 3  Variables in SUMO car-following model

Capacity level Mingap 
(m)

Accel 
(m/s2)

Decal 
(m/s2)

Emergency Decel 
(m/s2)

Sigma (driver 
imperfection)

Tau 
(s)

Level 0 2.5 2.6 4.5 8 0.5 1.0

Level 1 2 3.05 4.5 8 0.4 0.95

Level 2 1.5 3.5 4.5 8 0.3 0.9

Level 3 1.25 3.6 4.5 8 0.2 0.8

Level 4 0.75 3.7 4.5 8 0 0.7

Level 5 0.5 3.8 4.5 8 0 0.6

3.3 Simulation results

The main simulation results are provided by Figs 3-4. and Table 4. From the results for the who-
le network, one can see that from scenario 1 to scenario 6 the capacity of the whole network 
and the critical density vary. Scenario 6 has the largest critical density straightforwardly. The 
same tendency can be found in whole network for critical density and capacity that going up 
in the beginning, then decreasing, roaring up at the end. From the results for one single link, 
one can see that the capacities for scenario 1, 2, 3 and 4 are similar and relatively smaller, and 
the capacities for scenario 5 and 6 are bigger and have an increasing trend. The same change 
can be found on the critical densities. Fig. 4. shows the coefficients of the fitting curves which 
are fitted with quadratic polynomials. From the changes of the coefficients, one can see, the 
goodness of fitting is relatively high which means the total variation of the coefficients can 
be explained by the quadratic polynomials well.
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Z
���� � Simulation results for the whole network and a single link

Table 4  Network overall fitting result

Q = a ∙ ρ3 + b ∙ ρ2 + c ∙ ρ

Scenario Network Single link

a b c ρ
crit

Q
max

a b c ρ
crit

Q
max

1 1.7978 -239.19 5502.3 14 35112 3.63e-04 -0.3372 38.5766 62 1182

2 4.2538 -318.17 6253.9 13 36906 4.71e-04 -0.3331 37.1062 67 1132

3 3.5108 -299.51 6392.7 14 40434 7.33e-04 -0.3696 38.1478 64 1120

4 6.2310 -421.07 7640.7 13 41887 7.39e-04 -0.3561 37.2340 63 1118

5 3.0208 -261.08 5813.0 15 38648 7.66e-04 -0.3759 41.5738 69 1331

6 0.3600 -153.71 5097.1 18 44059 2.20e-04 -0.2543 38.9403 92 1601

Z
���� � The variations of the fitted polynomial coefficients (network level) together with the regression curves
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4 Conclusion

The effect of automated and autonomous vehicles to the urban MFD have been analysed 
through microscopic traffic simulation. A thorough simulation study was fulfilled in a grid 
traffic network. The results justified some regularity in the change of the urban MFD (network 
and link level as well) along with the autonomous technology evolution. The results are also 
important from the point of view of practical traffic engineering as the fundamental diagram 
is a common modelling approach when planning or analysing a road network. Therefore, one 
should take these changes into consideration in the future.
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