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ACOUSTIC EMISSION FOR MONITORING
OF STRENGTHENED RC BEAM-COLUMN JOINTS

Sena Tayfur', Emre Ercan’, Kentaro Ohno?, Ninel Alver'
"Ege University, Department of Civil Engineering, Turkey
2Tokyo Metropolitan University, Department of Civil and Environmental Engineering, Japan

Abstract

Beam-column joints are the crucial zones in reinforced concrete (RC) structures as they are
subjected to large forces during earthquakes and their behaviour has a significant effect on
the response of the whole structure. When the shear capacity of a joint is insufficient, the
structure may fail in a brittle behaviour due to large amount of shear stress concentrations
in this region. Thus, strengthening of deficient RC beam-column joints is important. In most
cases, the strengthening material covers the structure and it is not possible to see any da-
mage on the surface when the joint is subjected to a force. Acoustic Emission (AE) is a useful
method to detect crack development and progress in concrete non-destructively. Location of
the fracture source in a material, the size and energy of the crack and the time it starts crac-
king can be identified by AE method. In this study, identification of fracture mechanisms of
strengthened RC beam-column joints was aimed. For this purpose, the specimens were tested
under cyclic loading and monitored by AE. Afterwards, obtained AE data of the specimens
were analyzed and they were compared with the mechanical results.

Keywords: beam-column joint, acoustic emission, parameter analysis, crack localization
analysis, fracture mechanism

1 Introduction

Beam-column joint is the crucial zone in a reinforced concrete (RC) moment resisting frame
because it is subjected to large forces during severe earthquake loading and its behaviour
has a significant influence on the response of the structure. Under a severe earthquake, the-
re may be a large amount of shear stress concentrated on the beam—column joint area. The
brittle shear failure in the joint area may lead to serious consequences of severe damages
and total collapse of the structure. Consequently, enhancing the shear capacity of the joint
becomes more of a concern in the area of seismic design of RC structures. Some strengthe-
ning techniques have been developed such as anchoraging, applying external reinforcement
or wrapping with different strengthening materials. According to the results of the studies
conducted, ultimate load capacities and ductilities of the joints were enhanced after stren-
gthening by Carbon Fiber Reinforced Polymer (CFRP) [1, 2]. [3] enhanced the shear capacities
of the beam-column joint specimens with using CFRP laminates. [4] investigated the effect
of CFRP and anchoraging on RC beam-column joints. [5] obtained high rigidity, ultimate load
capacity and ductility by using CFRP strips with different schemes.

Monitoring of invisible damages has also been an important task for quality control of the
structures. By means of current test methods it is not possible to identify invisible cracks.
Acoustic emission (AE) is one of non-destructive testing methods and used for detecting
micro cracks in concrete even at low load levels [6]. It has been used in different applications
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fora long time and the studies show that AE is an effective monitoring technique for damage
detection in concrete [6-8].

This paperis focused on detection of damage progression in RC beam-column joints exposed
to cyclic loading and identification of mechanical and AE behaviours of a reference and a
CFRP-strengthened joint. Forthese purposes, experimental tests were carried out, specimens
were loaded and were simultaneously monitored with AE and the results were compared.

2 Structural Inspection by Acoustic Emission (AE)

Acoustic Emission (AE) can be defined as micro-scale earthquake due to propagation of ela-
sticwaves in a stressed material and detection of them by appropriate receivers. As presented
in Figure 1.a, when damage occurs due to the release of stored strain energy, elastic waves
are generated and propagate through the material. Afterwards, these waves are detected by
an AE sensor placed on the surface, transformed into the electrical signal and pre-amplified.
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Figure1 a) AE phenomenon, b) AE parameters

In addition, in order to consider only meaningful signals apart from the noises, a “threshold”
is set. Obtained AE signals can be processed by different analysis methods to have informati-
on about crack locations, their origination times and types. However, to carry out all of these
analyses, AE parameters -characteristic features of the AE signals- are needed (Figure 1.b).

3 Laboratory Experiments

3.1 Layout of test specimens

In the experimental study, cyclic lateral loading were applied on test specimens simulating
exterior beam-column joints of RC frames. Two specimens from C25/30 concrete were desi-
gned with same S240 longitudinal reinforcements and stirrups in theirjoints. While Reference
beam-column joint (BC)) is the reference specimen, Strengthened BCJ was produced by wrap-
ping the joint with 45° diagonal CFRP (MasterBrace FIB 300/50 CFS) strips having 4900 MPa
tensile strength. Geometrical and reinforcement details of both specimens are presented in
Figure 2.
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Figure 2

3.2 Test setup & equipment

The specimens were tested under cyclic lateral loadings using the test setup as shown in Figu-
re 3. Acoustic emission measurements were taken by an 8-channel Micro Il SAMOS AE system
by Mistras Group Inc. including sensors, preamplifiers, cables and a computer as shown in
Figure 3. The AE sensors were in 150 kHz resonance frequency range, the preamplifiers were

Geometrical and reinforcement details of the test specimens

used with 40 dB gain and threshold was set as 40 dB.
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a) Test setup, b) AE system
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4 Results & Discussions
4.1 Mechanical observations

First tensile crack on Reference BCJ) was observed at forward loading of 5% cycle. At backward
loading of this cycle, first diagonal cracks were observed and existing flexural cracks propa-
gated. As the load increased, all existing cracks widened and propagated. First diagonal crack
was observed at forward loading of 7" cycle at 36 kN on the joint and at this moment existing
flexural cracks also widened. Existing diagonal cracks propagated and joined to each other
at backward loading of 7" cycle and their width increased to 1 mm at forward loading of 8"
cycle. Present flexural cracks propagated through neutral axis of the beam. Longitudinal rein-
forcement of the specimen yielded at 52 kN load level of forward loading of 11" cycle. Ultimate
load capacity and maximum displacement of Reference BCJ were 58.22 kN and 91.18 mm.
Beam-column joint of Strengthened BC) was strengthened with diagonal CFRP strips. First
diagonal crack on the beam was observed at backward loading of 4" cycle. At forward loading
of 5™ cycle, this crack propagated and stayed on hold up to the backward of 6™ cycle. The first
noises from activities of CFRP strips were heard at forward loading of 7t cycle and rigidity of
the specimen decreased at backward loading of this cycle. First concrete-CFRP debonding
was observed at forward loading of 9" cycle and longitudinal reinforcement of the specimen
yielded at 59 kN load level of backward loading of 11" cycle. Ultimate load capacity and maxi-
mum displacement of Strengthened BC) were 70.14 kN and 96.13 mm. Figure 4 shows load vs
displacement curves of both test specimens.

Reference BCJ Strengthened BCJ
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60 60—
= 40 ] = 40
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Figure 4 Load vs displacement curves of the test specimens

4.2 Parametric AE analysis results

As shown in Figure 5, generally maximum 80 dB amplitude values were obtained during the
test of Reference BCJ. Punctuated increases of cumulative AE energy exist at 342. sec and
1048. sec. While the first punctuation occurred at forward loading of 5" cycle, the other was at
forward cycle of 7t cycle. These moments are attributed to originations of the first flexural and
shear cracks. As clearly seen, the first activity is in 99 dB, which is the maximum amplitude of
the test. In contrast to Reference BCJ, bigger punctuations in cumulative AE energy and higher
amplitude values are observed during Strengthened BC] test. At backward loading of 3" cycle
(1665. sec), the first flexural crack propagated and energy increased. Afterwards, a new punctu-
ation in cumulative AE energy was observed at 2104 sec where the noises from CFRP strips were
firstly heard. In addition, all AE parameters of Strengthened BCJ are higher than those of Refe-
rence BCJ. In order to compare crack types of the specimens, RA values, which are calculated
by dividing rise time to amplitude, were plotted versus average frequency values (Figure 6).
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Figure 5 Parametric AE analysis results of the test specimens
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Figure 6 RAvalue vs average frequency distributions of both specimens
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[9] standardizes higher RA values and lower average frequencies as more shear effective
cracks and vice versa. Accordingly, as clearly seen in Figure 6, tensile characteristics are more
effective in low load levels for both specimens. As the load increased, shear characteristics
dominated. However, RAvalues of Strengthened BCJ’s cracking activities are higher than tho-
se of Reference BCJ at all load stages. Thus, this indicates that activities of CFRP de-bonding
from concrete surface are characterized as shear. In addition, although Strengthened BCJ has
higher load capacity and rigidity, invisible shear activities in this specimen increased and the
joint resisted even to these more shear-effective cracks in higher loads.

4.3 AE source localization results

Apart from the mechanical observations, crack source locations of the specimens were also
obtained by conducting crack localization algorithm using AE data. By this means, arrival
times of the hits were captured via AIC Picker [10] and all AE events were localized by solving
multiple hyperbolic equations including distance between the source and the sensor, wave
velocity and arrival time. As a result of this procedure, Figure 7 was formed.
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Figure 7 Crack patterns of the specimens analysed by AE source localization

As clearly seen, cracks mostly concentrated on the joints of the specimens. Although the
capacity of the joint increased due to CFRP strengthening, a large number of cracks were also
observed in the joint of Strengthened BCJ.
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5 Conclusion

The main purpose of this study was to clarify damage progressions of a reference and a CFRP-
strengthened RC beam-column joint exposed to cyclic loading by acoustic emission (AE) tech-
nique. For these targets, experimental tests were carried out on two RC beam-column joints
which one of them was strengthened with diagonal CFRP strips, they were simultaneously
monitored by AE and the results were compared. Following conclusions about RC beam-co-
lumn joints were obtained: Strengthening the joint with diagonal CFRP strips increases the
ultimate load capacity. AE is an effective non-destructive testing tool to identify the fracture
mechanisms. Strengthening with diagonal CFRP strips changes AE behaviour by increasing
hits, cumulative energies and amplitude values and creates more explicit punctuations in
cumulative energy. Tensile cracks are more effective in low load levels and shear cracks do-
minate as the load increases. However, strengthening the joint with diagonal CFRP strips
increases RA values, ie. shear effect. Thus this indicates that, although CFRP-strengthened
RC beam-column joint has higher load capacity and rigidity, it faces more shear activities in
higher load levels. AE source localization is considerably an effective algorithm to obtain
damage mechanisms of the beam-column joints. Localized AE events draw similar cracking
pattern to visual observations and provide information about nonvisible crack locations.
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