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COMPARATIVE STRENGTH ANALYSIS
OF THE RAILWAY CANTILEVER

Svetoslav Slavchev, Vladislav Maznichki, Oleg Krastev, Kiril Velkov, Sanel Purgic
Technical University Sofia, Faculty of Transport,
Department of Railway Engineering, Sofia, Bulgaria

Abstract

The paperis dedicated to comparative analysis of the results of the static strength calculation of
the cantilever and the tests that have been carried out. Strength calculations have been made
using the Finite Elements Method in the Department of Railway Engineering at the Technical
University — Sofia. Three different types of Finite Elements (solid, shell and beam) have been
used for calculations. The tests of the cantilever have been carried out in the Testing laboratory
of Department of Railway Engineering. It was found that the stress results are very similar, es-
pecially in the areas with maximal values. This proves that a suitable calculation model with a
relatively small number of finite elements has been developed. This allows solving a wide range
of problems concerning the improvement of the cantilever with similar construction.

Keywords: cantilever, FEM analysis, test
1 Introduction

This report presents the results of a strength assessment of the elements of the catenary
using the finite elements method. Sophisticated computational models built from a mesh
of different types of finite elements, which accurately describe the geometry of the console
carrying the contact wire, have been developed. Theoretical calculations were made in the De-
partment of Railway Engineering using SolidWorks Simulation [1, 2]. All prescribed load cases
[3, 4, 5] were analyzed. In order to be able to select the most accurate computational model,
the results obtained by calculation are compared with results from tests. The equipment of
the German company HBM (Spider 8) [6, 7] was used for measurement of strain.

2 FEM models

The Finite Element Method used for analysis has been proven over the past decades as the
most accurate method of stress-strain analysis of complex machine tools [1, 2, 4, 5, 8, 9].
It allows a structure to be modeled with different types of finite elements (solids, shells,
beams, etc.), and the choice of the type of the finite element is purely subjective [5,9,10].
Four different models of cantilever were built. When developing these models, the next steps
were followed:

2.1 Analysis of the documentation
This analysis gives us information on the geometry and the shapes of the individual structural
elements, their material characteristics, the particularities of the connections between wel-

ded, bolted, articulated and other types of joints on the consoles.
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2.1.1 Characteristics of the material
The materials used for cantilever have the following physical properties [4, 11, 12]:

Table1 Physical properties

Alloy type Aluminum Alloy Stainless steel 1.4567
Yield Strength 260 MPa 340 MPa

Young module 70 GPa 200 GPa

Poisson Coefficient 0.33 0.3

Density 2700 kg/m? 7900 kg/m?

2.1.2 Geometrical peculiarities

Fig. 1a shows a general view of the console with a straight retainer, and Fig. 1b — one with a
counter-lock. The figures provide information about the pipe sections used to construct the
structure. The connections between them are made using U-shaped bolts that connect the
individual elements with cast tips and joints.

Figure1 Construction of the cantilever

The geometric characteristics of the console and its component elements do not allow for
a unambiguous solution to choose the type of finite elements to be used to construct the
computational model. For the purpose of the present study, computational models were de-
veloped using three types of finite elements, theoretically corresponding to the adequate
representation of the actual construction.

2.2 Development of calculation models

The design features were taken into account when building the computational models. Each
one of the computational models is characterized by the following features in chapters 2.2.1,
2.2.2and 2.2.3.

2.2.1 Restraint definitions
The restraint definitions are applied to the connection of the cantilever insulators with the
pole (Ux=0, Uy=0, Uz=0).

2.2.2 Loads

The loads on all FEM models are presented as follows:

« F, aforce acting horizontally on the steady arm carrying the contact wire applied to the link
of the arm with the cantilever.

« F, force generated by the masses of the carrier components.

« F, horizontal force acting in the bracket linking the cantilever and the messenger wire.

« Cantilever tare weight.

POWER SUPPLY OF TRANSPORT SYSTEMS AND TRACTION VEHICLES
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2.2.3 Load cases

Load cases inthe calculation models are defined according to the requirements of the norma-
tive document of the Bulgarian National Railway Infrastructure Company: Subsystem electrical
power supply of the traction vehicles 25 kV, 50Hz. Overhead contact system. Pantographs.
Mechanical interaction between pantograph and catenary [3]. Table 2 shows the load cases.
For both types of consoles the nominalvalues (H__ ), the maximum permissible operating va-
lues (X,), The maximum (X__) and the test (X __) loads determined for the specific conditions
of the electrified sections of the infrastructure must be guaranteed.

Table 2 Load cases

element Load, kN
Force Scheme N¢ X, X om Xout X,
Single F, 1 6,9 4,6 3,7 2,3
cantilever
fev Fur 5,4 3,6 2,9 1,8
Fo 5,1 3,4 2,7 1,7

Computational models for all load cases on the cantilever with a straight retainer have been
developed. For this purpose, workloads — X have been taken into account in the deve-
lopment. They were used for verification of the computational models. Forces in all models
are applied as shown on Fig. 2.

Figure 2 Load scheme [3]

2.3 Calculation models

2.3.1 Calculation model with solid elements mesh and pin connection

Its geometry is constructed as a monolithic body. The connection between the individual units
is made by pins. This allows rotation of different components relative to one another. Addi-
tionally, a “no penetration” connection is established between the individual components.
Convergence of the solution was studied. In Fig. 3 a overview of the finite elements mesh is gi-
ven. Amesh type used is built up of solids elements. The model is built up with 121020 nodes
including 64015 elements. The minimum element size is 4 mm and the maximum is 19 mm.

Figure 3 Solid mesh
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2.3.2 Hybrid calculation model with mixed mesh - solid and beam elements

The geometric modeling of the connecting elements is interpreted as a 3D solid element.
Pipes are presented as beam elements. Fig. 4 shows a model with a mixed mesh of finite
elements. The model is build up with mixed mesh that contains solid and beam elements.
The model parameters are as follows: number of nodes 28357, number of elements 15006,
maximum element size 19 mm, minimum element size 1 mm.

Figure 4 Mixed mesh - solid and beam elements

2.3.3 Hybrid calculation model with mixed mesh - solid and shell elements

This calculation model is the same as that in point 2.3.2 with the difference that the pipes of
the structure are modeled as surface (shell elements) as shown in fig. 5. The cantilever model
is built by mixed mesh — solid and shell elements. Parameters of the mesh are: 54605 nodes,
28651 elements, maximum element size 25 mm, minimum element size 5 mm.

Figure 5 Mixed mesh solid and beam elements

2.3.4 Calculation model with shell elements

The calculation model is made entirely of surfaces. The disadvantages of this type of modeling
are the inability to build the tube attachments. The reason for this is that the surfaces are
suitable for modeling products made of sheet material.

Figure 6 Model whit shell mesh

POWER SUPPLY OF TRANSPORT SYSTEMS AND TRACTION VEHICLES
CETRA 2018 — 5" International Conference on Road and Rail Infrastructure



The modelin Fig. 6. is built up with shell elements. The dimensions of the finite elements are
16 mm for areas where there are no sudden changes in geometry appears and 5 mm in areas
with stress concentration. The number of elements is 18866 and the number of nodes 38172.

3 Test

The test was carried out on a special bench in Testing laboratory of Department of Railway
Engineering at the Technical University — Sofia, as shown in Fig. 7.

R4

A
(X

Figure 7 Test bench and connection configuration of the strain gauges[13]

From the theoretical studies and the analysis of the results it is clear that the maximum
stresses in all models are in the same area of the construction. This is important, because
knowing the location of the most endangered sections, the exact position of the strain gauges
can be determined. The number of locations where the measurement is performed is limited,
taking into account only areas with maximum stresses.

During the bench tests, a half-bridge circuit with two reference resistors and two strain gauges
[6, 13, 14, 15] was used. Four strain gauges were placed in the investigated area. Two of them
are located at the top of the carrier tube and two at the bottom. The placement of gauges is
T-shaped, one located along the longitudinal axis of the profile and the other along its tran-
sverse axis [16]. For the purpose of this study, two principal binding schemes were used (fig.
7) [13] and three groups of studies have been conducted.

4 Results analysis

The following variables were examined: equivalent stresses in finite elements, stresses in
nodes, stresses in longitudinal direction of the tube. The calculations results show, that there
are no areas with insufficient strength in whole model. An analysis of the results can provide
clearness about the most loaded areas of the construction. This helps to identify the most
endangered sections, hence the location of the strain gauges to account the adequacy of the
model. Figure 8 a,b,c,d shows: stress diagrams obtained by the FE analysis. The recorded
values of stresses from the tests via the connection schemes shown in Fig. 7 [6, 13, 14, 15]
are similar to values obtained theoretically. The comparative analysis of the results given in
Table 3 is done for different elements used in calculation [9]. Reason for this approach, on
the one hand, gives us the analysis of the results obtained for the stresses by nodes and by
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elements. The values obtained show minimal difference. On the other hand, the strain gauge
detects deformations of a particular area [9].

&

l.u.s N/mm”2 (MPa] '

-50.6 _N/mm*2 [MPa]

a) b)

Figure 8 a) Solid; b) Shell; ¢) Hybrid- solid/beam; d) Hybrid- solid/shell

Table 3 Measurement results

Model FEM TEST
Bottom Top Average Half bridge Half bridge Half bridge
Bottom Top Top-Bottom
[MPa] [MPa] [MPa] [MPa] [MPa] [MPa]
Shell -44.9 40.2 42.6 -49.787 51.952 52.060
Solid -50.6 51.3 50.95
Solid/Beam 45.7 45.7
Solid/Shell -50.1 54.6 51.3

5 Conclusions

Summarizing the overall work on this study, the following conclusions can be made: Data
analysis shows the presence of good matching results for the stresses obtained by the calcu-
lations and those of the test. The minimum differences can be explained by: the simplification
adopted in the modeling; the way of gluing and placement of the strain gauges; errors of me-
asuring equipment; constructive and technological inaccuracies in the construction design.
Calculation models with solid mesh and hybrid with mixed mesh (solid and shell elements)
exactly describe the behavior of the construction. The stress values obtained by this two me-
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shes are as close as possible to the values obtained by test. They are suitable for research and
optimization of other elements of the cantilever, such as wire joints, clamps, brackets, etc.
In conclusion, it should be noted that the developed calculating models can be used in the
design of new constructions,which additionally can be tested with test bench at the laboratory
of the Department of Railway Engineering.
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