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railway 
ballast in terms of heavy axle load operation

Anastasia Konon
Emperor Alexander I St. Petersburg State Transport University

Abstract

Railway track stability depends not only on the subgrade sustainability, but also on the quality 
of ballast itself. Ballast bearing capacity depends on limit stress state of ballast layer and 
subgrade, characterized by limit stress in ballast under sleeper. Ballast bearing capacity in 
terms of rolling stock vibrational dynamic impact is evaluated using limit equilibrium theory. 
This theory incorporates inertial forces, generated in soil media by vibrational dynamic im-
pact. Inertial forces depend on vibrational accelerations of soil particles. This paper presents 
the results of railway ballast field tests. Tests were aimed to study vibrational acceleration (VA) 
of ballast particles in terms of train traffic with heavy axle loads. Tests were held at Russian 
Railway Research Institute experimental track. A set of RA 021 accelerometers were put into 
ballast layer at two levels: 10 and 55 cm below the sleeper. The test results are vibrational 
acceleration distribution in ballast layer and experimental relationships of vertical and hori-
zontal vibrational accelerations damping in terms of train operation with axle load up to 294 
kN. Increasing of rolling stock axlу loads leads to rise of vibrational dynamic impact on railway 
track. Axle load growth from 225 to 294 kN provides increased vibrational acceleration under 
the sleeper. Maximal values of vertical vibrational accelerations are registered at the underrail 
section. Maximal values of horizontal VA are registered at the section near the center line. Sta-
ted test results provide references for calculation of ballast and subballast bearing capacity.

Keywords: ballast, vibrational acceleration, vertical stress, heavy axle load

1 Introduction

One of Russian railway transport development area is car axle load increasing. JSC “Russian 
Railways” acquires cars with axle loads up to 250 kN per axle. New car types with axle loads 
up to 270 kN per axle are developed. This course sets the task of track stable performance 
under the increased train dynamic load. Worldwide operating experience and in-situ tests [1] 
show that increasing axle load and train speed induce growth of defect amount in ballast, 
subballast and subgrade [2].
Railway track stability depends not only on the subgrade sustainability and quality of ties, 
fastenings and rails, but also on the quality of all subballast elements and the ballast itself. 
The main cause of ballast reliable performance is its bearing capacity. It depends from the 
level of vibrational dynamic load applied to ballast layer [3] and subballast characteristics. 
Ballast layer bearing capacity and deformability depend on ballast cohesion and friction an-
gle, moduli of deformation and elasticity. These characteristics depend on vibrodynamic load 
level under the sleeper pad, ballast granulometric composition, fouling, density, roundness, 
subsleeper damper existence and its stiffness and so on. Values of these characteristics 
and their change according tonnage accumulation allow to predict ballast bearing capacity, 
deformability and overhaul life.

DOI:B https://doi.org/10.5592/CO/cetra.2018.916
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Imparting force impulse from a rolling stock wheel to rail tread surface causes similar impul-
ses imposed to sleeper, ballast and subgrade and causes oscillation of track structure and 
rolling stock. Ballast and subballast oscillations are polyharmonic waves, spreading into ba-
llast, sudgrade and beyond. Previous research [4, 5, 6] showed that superstructure and 
subgrade oscillations are stochastic. Oscillation parameters are due to various factors (rolling 
stock axle load and speed, track superstructure deterioration, strength and deformation pro-
perties of subgrade soil and many more) and can be predicted using statistics and probability 
theory methods. The most reliable values of rolling stock vibrational impact to railway track 
should be obtained from in-situ tests on operating railway lines. Ballast bearing capacity 
depends on limit stress state of ballast layer and subgrade, characterized by limit stress in 
ballast under sleeper. Ballast bearing capacity in terms of rolling stock vibrational dynamic 
impact is evaluated using limit equilibrium theory [7, 8]. This theory incorporates equations 

of soil media motion. The stated equations include following components: 
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  = γ/g – soil density, g – free fall acceleration, 9,81 m/s2; U, V – oscillation displacement 
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Materials and methods

Emperor Alexander I St. Petersburg State Transport University (PGUPS) researchers held in-situ 
tests of vertical and horizontal vibrational accelerations (VA) of ballast particles. Rolling stock 
on the site had axle loads from 225 to 294 kN and 70 kmph speed. Tests were held at Russian 
Railway Research Institute experimental track. Track structure on the site was the following: 65 
kg/m rails, concrete sleepers (2000 items/km), tension clamp fastenings ARS-4, thickness of 
granite ballast was 55 cm under the sleeper. Ballast consisted of 25-60 mm particles. VA were 
measured with RA 021 accelerometers. These sensors provide measuring of accelerations up 
to 200 m/s2 and frequency 5 – 5000 Hz. Accelerometers were connected to seismic station 
ZET 048. Sensors were put under the sleeper and in the ballast layer. Along the sleeper sen-
sors were set at the sleeper end, at underrail section, and near centre line of a track and 55 cm 
below the sleeper (at the sleeper and). Sensors placement in ballast layer is shown in Fig. 1.

Figure 1 Sensors placement in ballast layer (all measurements in metres)
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3 Results and discussion

Vertical VA distribution charts at level of 10 and 55 cm under the sleeper are shown in Fig. 2-3.

Figure 2 Vertical vibrational acceleration distribution at the level of 10 cm under the sleeper: 1 – at underrail 
section, 2 – near center line of a track, 3 – at the sleeper end

Figure 3 Vertical vibrational acceleration distribution at the level of 55 cm at the sleeper end
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Increasing of rolling stock axle loads from 225 to 294 kN/axle causes growth of vertical VA. 
Maximal values of VA are recorded at the underrail section, reaching from 3.8g to 9.5g and 
growing for 2.5 times. At the sleeper end vertical VA are about 15 % lower, than at the underrail 
section and amount from 2,7g to 9g for 225-294 kN axle load at depth of 10 cm under sleeper. 
At the section near center line of the track vertical VA have the lowest values, which change 
from 2,5g to 5,7g. Horizontal vibrational acceleration distribution at level of 10 cm under the 
sleeper is shown in Fig. 4.
Horizontal VA distribution varies from the one for vertical VA. As shown in Fig.4, maximal valu-
es of VA are registered at the section near center line of a track. They reach from 8,1g to13,3g 
for car axle loads from 225 to 294 kN respectively. Minimal horizontal VA are recorded at the 
sleeper end. They amount from 3,5g to 7g. VA at underrail section are 10 % higher than at the 
sleeper end and reach from 3,7g to 7,5g for car axle loads from 225 to 294 kN respectively.

Figure 4 Horizontal vibrational acceleration distribution at the level of 10 cm under the sleeper: 1 – at underrail 
section, 2 – at the sleeper end, 3 – near center line of a track

Obtained data was represented in analytical form for further use in calculations. Oscillation 
distribution can be described using damping factors in vertical and horizontal plane. Dam-
ping factors were determined as vibrational acceleration value ration to vibrational accele-
ration under the sleeper. Damping factors as a function of point coordinates were plotted in 
semilogarithmic frame. Resulting curves were described with following equations:
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4 Conclusions and implications

Increasing of rolling stock axlу loads leads to rise of vibrational dynamic impact on railway 
track. Axle load growth from 225 to 294 kN provides increased vibrational acceleration under 
the sleeper. Vertical VA grow from 3,8g to 9,5g or 2,5 times in terms of axle load increasing 
from 225 to 294 kN. Horizontal VA enlarge from 3,7g to 7,5g or 2,02 times respectively.
Maximal values of vertical VA are registered at the underrail section. They change from 3,8g 
to 9,5g for axle loads 225-294 kN. Vertical VA are about 15 % lower at the sleeper end than at 
the underrail section. Vertical VA at the sleeper end amount from 2,7g to 9g at the level of 10 
cm below the sleeper. Section near the center line has the lowest vertical VA values.
Maximal values of horizontal VA are registered at the section near the center line. Horizontal 
VA in this section are 8,1g for 225 kN axle load and 13,3g for 294 kN axle load. Horizontal VA 
decrease in the direction of the sleeper end. There are intermediate values registered at the 
underrail section. Section at the sleeper end has minimal horizontal VA values.
At the level of 55 cm below the sleeper end vertical VA change from 1,5g to 5,3g in terms of 
axle loads increasing from 225 to 294 kN.
Vertical and horizontal VA distribution in ballast can be described with Eqs. (1) and (2). These 
equations determine inertial forces, generated in soil media by vibrational dynamic impact. 
Eqs. (1) and (2) are used in calculations of ballast bearing capacity in terms of rolling stock 
vibrational dynamic impact [9].
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