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THE OPTIMIZATION OF SUPERCAPACITOR
MODULE PARAMETERS OF A STATIONARY ENERGY
STORAGE SYSTEM IN DC POWER SUPPLY

Wtodzimierz Jefimowski, Adam Szelag, Anatolij Nikitenko, Maciej Wieczorek
Warsaw University of Technology, Institute of Electrical Power Engineering,
Electric Traction Division, Poland

Abstract

The paper presents a method of optimization of nominal voltage and minimum state of charge
(SoCQ) of a supercapacitor (SC) energy storage system (ESS) module dedicated for stationary
traction application in a DC electrification system. The criteria of optimization include minimi-
zation of power losses during a charge-discharge cycle on one hand and maximization useful
energy capacity on the other. The power losses are minimised by limitation of peak power
values of SC cells and DC/DC converter elements. The optimization procedure is based on
the simulation model of the SC module and DC/DC non-insulated converter. The purpose of
the simulation model is power losses evaluation. The calculations of the annual energy and
cost savings are carried out for the parameters of ESS obtained as a result of an optimization
procedure.

1 Introduction

The significant part of railway industry operation constitutes the costs of traction energy.
Furthermore, due to climate changes, energy efficiency has become an important issue
approximately over the last decade. The issue plays an important part in the EU regulations,
which demand the energy efficiency audits to be carried out in large companies. The envi-
ronmental aspect of the energy efficiency is of utmost importance in Poland, where 97 % of
electric energy is generated in coal power plants.

Most of the newly produced as well as modernized rolling stock in Europe is equipped with
regenerative braking. The regenerative braking energy is effectively utilized under condition
of catenary receptivity. The last is ensured when during the recuperation braking there are
other trains drawing power remaining within the electric connection with the braking train
via overhead catenary system (OCS). Otherwise, in order to ensure the OCS system recepti-
vity additional equipment needs to be implemented. One of the measures applied for this
purpose is stationary energy storage system (ESS). The trackside ESS in terms of the type of
energy storage is mainly of three types: flywheels, supercapacitors (SC) and batteries. Due
to optimistic tendency of price reduction observed for the last decade in case of SC energy
storage devices, the growing attention of the researches is focused on them. Fig. 1 presents a
general scheme of the stationary SC energy storage system installed in a traction substation.
A significant number of analyses have been undertaken in order to investigate the efficiency
of regenerative braking recovery by stationary SC ESS [1-6]. The number of research works
investigated the influence of location of the ESSs as well as their parameters on the efficiency
of regenerative energy recovery. Most of the analysed solutions focus on a 750 V DC electrifi-
cation system for light transportation systems [4, 5, 7, 8].
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Figure1 A general scheme of a stationary energy storage system connected to a traction substation with a
12-pulse transformer rectifier unit

The paper pays particular attention to optimization of SC pack parameters for a given location
of ESS to ensure the maximum efficiency of regenerative energy recovery. The proposed soluti-
onis dedicated to all of the DC electrification systems. However, the investigation was carried
out fora 3 kV DC system. The perspectives of SCESS implementation in a 3 kV DC system are
described in [9]. The efficiency models of the SC pack and the DC\DC converter were assumed
based on the literature analysis.

2 Efficiency model of ESS with a supercapacitor.

Forthe investigation purpose the supercapacitor packand DC/DC converter efficiency models
were developed. The models are based on the literature analysis.

2.1 Model of a supercapacitor module

The model of a supercapacitor for efficiency calculations was taken from [10], where the SC
cell consists of capacitance Cand internal resistance ESR. The ESR value depends on the tem-
perature inside the SC pack during its operation, however, for the purpose of the research, the
constant value of ESR, declared by a manufacturer is assumed. In the SC pack the resistance
of contacts between the adjacent SC cells R_is assumed, Figure 2.

Cc o o o C
ESR ESR
Rec Rc
o o
o o
o o
Cc o o o C
ESR ESR
Re Rc

Figure 2 The assumed electrical model of a SC pack for efficiency calculations
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Therefore, the resultant internal resistance of the SC pack is obtained according to (1):

n-(ESR+R)
m

ESR, = Q)

Where:
n - number of cells connected in serious;
m — number of cells connected in parallel.

2.2 Model of a DC/DC converter

There are known several types of DC/DC converters, which are generally divided into insulated
and non — insulated converters [11, 12]. In the article the assumed type of a DC/DC converter
is a non-insulated buck-boost converter. The general scheme of this converter is presented
in Figure 3.

D1

<] L
— 05 Y

7

Q1
SC pack
c —— D2
Al e I
TTT

—0 O

O

Figure 3 Bi-directional buck-boost converter connected to a battery pack

The efficiency model was developed in [7]. The efficiency model presented in [7] assumes
replacing the electric power elements as wellas Land C elements with equivalent resistances
and switching losses of IGBT transistors. The efficiency of the converter in the buck mode is
given by (2) [7]:

n= out __ 2 A (2)
"AL A+

L

A1 = Km +R0n1 +(1 _Km)an +RL

Where: A, =U,+/(1-Ky, Uy, €)
A — Rczug (1 - Km) (Esw(on) + Esw(off) ) : f5
S 1(fL) 2

Whereas the efficiency of the converter in the boost mode is given by (4) [7]:

P u
,r]: I;ut — 1 (4)
"B +B, 2
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Bl = (1 - Koz > Ronz + KDZRDl + RL
Where: B, =U, +/Ky,U,, (5)

83 _ (Esw(on) +§sw(off))' fs

Figures 4a and 4b show the losses in the converter assumed in the research as a function of
current of the SC pack and duty cycle for boost and buck mode, respectively. Whereas Figure
4 c and d show the efficiency values as a function of SC pack current for the boost and buck
mode, respectively, for the constant value of a duty cycle.
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Figure 4 Powerlosses and efficiency of the buck-boost converter

3 Minimization of power losses in ESS

The mathematical models of the SC pack and DC/DC converter presented above were imple-
mented in MATLAB. Based on both elements the simulation efficiency model of the whole SC
ESS were developed. The efficiency model was investigated assuming the 24-hour power of
the traction substation load where the ESS is assumed to be installed. The power load profile
was obtained based on the simulation carried out on the electrified railway line simulation
model developed in the Electric Traction Division of the Warsaw University of Technology.
The power load includes positive values — the output DC power of a traction substation as
well as negative values — regenerative power available in the traction substation due to the
deficiency of overhead catenary receptivity.

The aim of the research is to minimise power losses. The losses in the DC/DC converter de-
pend on the duty cycle and converter current (Figure 4). Whereas losses in the SC battery pack
are the function of charge/discharge SC pack current |.

POWER SUPPLY OF TRANSPORT SYSTEMS AND TRACTION VEHICLES
CETRA 2018 — 5" International Conference on Road and Rail Infrastructure



AP, =ESR, I, (6)

Therefore, the total power losses are the sum of losses in the SC pack and in the DC/DC
converter.

APESS - APS(Z + PDC/D(Z (7)

The usable energy capacitance of the SC pack depends on the number and capacitance of
the SC cells and the minimum state of charge (the depth of discharge). The typical assumed
minimum state of charge in the literature is 50 % for stationary and vehicles applications [13].
For low state of charge available values, the usable energy capacitance is higher. However,
on the other hand for low state of charge the operation of DC/DC converter is ineffective due
to high values of the duty cycle in the boost mode, which leads to high values of losses in the
converter and in the SC pack. Hence, the value of the SoCis a compromise solution between
the available total energy capacitance maximum use and minimisation of power losses.
Figure 5 shows the losses in the whole energy storage system for two different minimum
states of charge available in the strategy algorithm for the same ESS load. In Figure 5a, the
minimum SoC assumed in ESS control algorithm is 0.5 U_in Figure5bis0.3 U .

a) b)
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DC/DC converter losses DC/DC converter losses
— SC pack losses = - SC pack losses
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Figure 5 Power losses in the stationary ESS with a supercapacitor for different minimum states of charge
(SoC) assumed in a control algorithm: a) 50 %, b) 30 %

In the research, it is assumed that the nominal power of the DC/DC converter is 1.2 MW and
the useful energy capacitance of the number of SC cells in a pack is 3500. The parameters
of the energy storage system were determined in the sizing process based on the economic
analysis, description of which is omitted in the paper.

The proposed method of SC pack optimization includes simulation calculation of input energy
of ESS, output ESS and total energy losses in ESS in a 24-hour cycle. The above parameters
were calculated as a function of the minimum state of charge. The minimum state of charge
is assumed between 30 % and 70 %. The investigation was carried out for different variants
of a SC pack connection. The assumed variants of the SC pack connection are presented in
Table 1. The results of simulation are presented in Figure 6.
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Table1 Variants of the battery pack configuration assumed for investigation: n — number of cells connected in
serious, m — number of cells connected in parallel, U, — nominal voltage of the SC pack.

Pack 1 Pack 2 Pack 3 Pack 4 Pack 5 Pack 6
n 437 500 583 700 875 1167
m 8 7 6 5 4 3
m*n 3496 3500 3498 3500 3500 3501
U, 1179,9 1350 1574,1 1890 2362,5 3150,9
a) b)
2.7 T T T 0.55
Total 24h ESS energy losses - pack 1
Total 24h ESS energy losses - pack 2
261 0.5+ Total 24h ESS energy losses - pack 3
v Total 24h ESS energy losses - pack 4
\ Total 24h ESS energy losses - pack 5
25 0.45 - Total 24h ESS energy losses - pack 6| -
= \
—_ - AN
<24 S oo4r \ \
3 X
< S Y
= 2 NN
23 = w 0.35 RS
= e "] . ™
2 = k] A
8 | E RN
C 22} o 03 X ~
w22f o 2 R
w e Nt
21t Input 24h ESS energy (all pack variant 0.25 - \\ \\
’ Output 24h ESS energy - pack 1 ) TS \\\\.
Output 24h ESS energy - pack 2 \\\_ \\ '
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2r Output 24h ESS energy - pack 4 ’ T 7 &
Output 24h ESS energy - pack 5 TR
i Output 24h ESS energy - pack 6 0.15 i i i {
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min SoC [%] min SoC [%]

Figure 6 a) 24 h input energy of ESS for all of the variants of the pack and output 24 h energy of ESS as a
function of a minimum state of charge, b) 24 h total ESS energy losses for the variants of the SC pack

4 Conclusion

The proposed method of optimization of an energy storage system SC pack allows finding
the minimum state of charge, the most effective from the point of view of regenerative energy
recovery for a given number of cells. The results show that the most effective minimum SoC
is 39 %. The investigation carried out for the various configurations of the SC pack shows
that the most effective from regenerative energy utilization efficiency is the variant with the
largest number of cells connected in serious (pack 6). Current per single cell as well as the
losses in the SC pack are comparable for the different variants of the SC pack. However, the
losses in the DC/DC converter are lower in case has the nominal SC pack voltage is close to
the no-load voltage of the substation busbar. The nominal voltage of the SC pack could not
exceed the no-load voltage of the substation busbar; otherwise the full bridge topology of
DC/DC converter is required.
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