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Abstract

Car-following models describe the longitudinal movement of vehicles and are a major com-
ponent of microscopic simulation packages. As car-following models seek to replicate the 
behaviour of individual drivers, their mathematical formulation usually includes a large set 
of adjustable parameters. The calibration of the model is essential to achieve accurate re-
sults, but as it may be a complex and expensive task, users often rely on default values 
or on simple techniques that offer poor transferability. In this paper we describe a calibra-
tion technique for the Intelligent Driver Model (IDM) that explicitly accounts for the physical 
meaning of each parameter. Trajectory data was collected for a sample of Portuguese drivers 
using an instrumented vehicle and covers the most relevant cases, such as unconstrained 
acceleration and deceleration manoeuvres and car following in steady-state conditions. A 
two-step calibration technique was followed: first, subsets of parameters with clear physical 
meanings were manually adjusted to replicate the velocity profiles of simple driving pat-
terns; second, the results were used to define the bounds of values within an automatic 
calibration procedure for normal driving conditions. First results show that the calibration 
procedure allows to accurately replicate the real trajectories. There is still the concern with 
the transferability of results and further work is required to understand how to reach the best 
compromise between the model’s descriptive and predictive capacities.
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1 Introduction

Car-following (CF) models describe the longitudinal movement of vehicles and are a major com-
ponent of microscopic simulation packages. As CF models seek to replicate the behaviour of 
individual drivers, their mathematical formulation usually includes a large set of adjustable 
parameters. Some calibration approaches rely on the use of macroscopic traffic data, such 
as counts and speeds at detectors, and look for the parameter values that best replicate the 
measured relationships of speed, flow and density. However, many authors defend that the 
most exact procedure to calibrate CF models requires trajectory data, that is, velocities and 
relative distances between pairs of leader-follower vehicles. Trajectory data can be obtained 
using driving simulators [1], instrumented vehicles [2, 3]; or from aerial images, collected either 
from tall buildings [4], helicopters [5] or drones [6]. These types of experiments are expensive 
and complex, which may explain why only a small fraction (9 %) of recent papers related to 
“car-following” and/or “adaptive cruise control” attempted to calibrate the CF models [7]. 
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In this paper we describe a simple and low-cost calibration technique for the Intelligent Driv-
er Model (IDM) [9] that explicitly accounts for the physical meaning of each parameter. Con-
tinuing a previous work [8], trajectory data was collected for a sample of Portuguese drivers 
using instrumented vehicles and covers the most relevant cases, such as unconstrained ac-
celeration and deceleration manoeuvres and car-following in steady-state conditions. 

2 The IDM car-following model 

2.1 Model structure

The Intelligent Driver Model is a deterministic CF (time-continuous and autonomous) model 
in the optimal velocity family, with additional clauses to make it accident-free. It is described 
by the acceleration equation – eqn (1).

  
(1)

  (2)

The acceleration depends on the variables v (vehicle velocity at a given time step), Δv (veloc-
ity difference for the leader, positive when approaching) and s (gap, bumper-to-bumper dis-
tance to the leading vehicle). v0,  s0{\displaystyle s_{0}},  T{\displaystyle T},  a{\displaystyle 
a}, {\displaystyle b}b and δ are parameters which have the following meaning: v0 (desired 
velocity, the velocity the vehicle would drive at in free traffic), s0 (minimum spacing, a min-
imum desired net distance), T (desired headway, the minimum possible time to the vehicle 
in front), a (the maximum vehicle acceleration), b (comfortable braking deceleration) and 
δ (acceleration exponent, specifies how the acceleration decreases when approaching the 
desired velocity).
The acceleration consists of two terms, one comparing the current velocity v to the desired 
velocity v0, and one comparing the current gap s to the desired gap s*. The vehicle velocity 
and position are updated using a numeric integration scheme assuming constant accelera-
tion during finite time intervals Δt as described by the eqns (3) and (4).

  (3)

  (4)

2.2 Model decomposition

Each parameter describes a main aspect of the driving behaviour, suggesting the possibility 
of conducting a sequential calibration procedure. A two-part calibration is followed: first, 
the most relevant parameters for a set of elementary driving conditions were identified and 
calibrated; after that the initial parameter values were used to define the minimum and max-
imum bounds of an automatic calibration procedure that looks for the full set of parameters 
that provides the best fit under typical driving conditions. The elementary driving conditions 
considered for the first part are:
1.  Unrestricted acceleration to the desired velocity: when s → ∞ the second term of the 

acceleration function tends to zero. The acceleration decreases as v approaches v0 and 
depends only on the parameters a, δ and v0, given by eqn (5).
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  (5)

2.  Following a vehicle with constant velocity (steady-state equilibrium): by setting  = Dv = 0, 
we obtain the equilibrium gap s (eqn (6)) with the velocity being the independent variable. 
Under congested traffic (v v0) the gap increases linearly with the v and depends mostly on 
the parameters s0 and T.

  (6)

3.  Deceleration to a complete stop: this driving condition can be modelled by considering 
that at a given instant the driver notices a stopped vehicle ahead; the deceleration is con-
trolled mostly by the parameter b.

3 Data collection

The full data collection process involved multiple drivers and vehicles. For the sake of sim-
plicity, data is presented for only one leader follower pair. The leader vehicle is a 2007 Opel 
Corsa, the follower is a 2015 Mercedes C220 with automatic transmission, equipped with a 
datalogger device from Race Technology Ltd (DL1 Club), Figure 1. The data logger has internal 
accelerometers and a 20Hz GPS. Positional accuracy is about 3 m (circular error probability) 
and the velocity accuracy is better than 0.1 km/h. A LIDAR rangefinder (ULS, from Laser Tech-
nology Inc.) was connected to the datalogger to provide real time distances to the leading ve-
hicle. The data analysis was based on the Race Technology software which, with a maximum 
frequency of 20 Hz, allows the extraction of time series for any measured variable. The var-
iables of interest to the calibration were the follower’s position, velocity, acceleration, and 
bumper-to-bumper gap. Some experiments required a single vehicle and were conducted 
with the Mercedes. The driver is a male adult with more than 20 years of driving experience.
The work focused on a heterogeneous urban route with 4.4 km on each direction (Figure 2). 
The route has arterial, multilane roads in sections 1-2, 3-4 and distributer, single lane roads 
in section 2-3. After leaving the university campus, drivers were instructed to follow the lead-
er vehicle between points 1 and 4 according to their normal driving style. Section 4-5 was re-
served for unrestricted acceleration and deceleration manoeuvres: acceleration from stop to 
a steady velocity and then deceleration to a stop. Drivers were asked to repeat 9 times these 
manoeuvres using smooth (3x), normal (3x), and aggressive (3x) driving styles, allowing to 
identify minimum and maximum bounds for the corresponding parameters. The kinematic 
data was combined with the LIDAR measurements. The time series were filtered to remove 
outliers and resampled to 4 Hz, resulting in small files and fast optimization procedures. 

Figure 1 Data acquisition system: Left – measuring the gap to the leading vehicle; top right – datalogger; top 
bottom: LIDAR
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Figure 2 Route used for the calibration process

4 Parameter calibration

The calibration procedure takes the form of an optimization problem [10] and it was imple-
mented using the nonlinear programming solver in Matlab fmincon (find minimum of con-
strained nonlinear multivariable function). This method provides fast and accurate solutions, 
however, alternative techniques, such as genetic algorithms [8], may be preferable to solve 
more complex optimization problems. The objective function aims to minimize the difference 
between the measured and predicted time series of the velocity, given by the average root 
mean square error (RMSE), eqn (7).

 minimaze RMS(v) =  
(7)

 subject to: 

where β is a vector of CF model parameters, LBβ and UBβ represent the lower and the upper 
bound for the parameters in β, respectively. This was done in two parts: in the first, we mod-
elled elementary driving conditions to minimize the number of parameters involved and iden-
tify the reasonable range of values that each parameter can take; in the second, all parameters 
were simultaneously estimated to provide the best fit under a mix of driving conditions.

4.1 Unrestricted acceleration from stop

The objective of this first calibration step was to find estimates for the parameters a and δ. 
Figure 3 (left panel) shows the velocity and acceleration time series for the field (GPS) and 
fitted data, corresponding to one of the nine manoeuvres. The IDM trajectory was calculated 
using the unrestricted acceleration function (eqn 5) and, for the illustrated case, the best fit 
was found for a = 2.03 m/s2, δ = 4.20 and v0 = 14.0 m/s. The complete set of results is pre-
sented on Table 1 and Figure 3. 
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Figure 3 Field vs predicted cinematic profiles for the acceleration and deceleration manoeuvres

Table 1  Results of the calibration using elementary driving conditions

4.2 Car-following in steady-state conditions

The second calibration step aimed at finding estimates for the minimum spacing s0 and the 
desired time headway T under a normal driving style. As given by eqn (6), for v  v0 the bump-
er-to-bumper distance increases linearly with the velocity. The graphic gap vs. velocity (s – v) 
data was extracted manually by isolating small segments (≈ 4 s) of steady-state driving con-
ditions (constant velocity and gap) along the sections 1-4, Figure 4. As the leading driver was 
imposing relatively low velocities, the term (v/v0)d is small, and therefore s0 and T are given 
by the slope and intersection of the fitted line (s0 = 3.2 m, T = 0.86 s). 

Figure 4 Linear regression of s-v data points in steady-state conditions

Driving style
a [m/s2] Δ b [m/s2]

Min Mean Max Min Mean Max Min Mean Max

Smooth 0.92 0.99 1.13 3.52 3.56 3.59 0.74 1.01 0.98

Normal 1.52 1.60 2.03 4.21 4.63 5.34 1.83 2.04 2.28

Aggressive 2.34 2.74 2.97 1.99 3.59 5.72 3.75 4.06 4.31



720 INFRASTRUCTURE AND TRAFFIC PLANNING AND MODELLING
7th International Conference on Road and Rail Infrastructure - CETRA 2022

4.3 Deceleration to a complete stop

The third step aims at finding an estimate for the remaining parameter, the comfortable de-
celeration b. To calibrate this parameter, we followed a process like the one used to find a 
and δ, this time fitting the velocity time series of an isolated vehicle coming to a full stop, 
under smooth, normal, and aggressive driving styles. Since modelling this manoeuvre with 
IDM requires the full set of parameters, the values found in the previous calibration steps 
were taken as reference. Figure 3 (right panel) shows the GPS and model data for one of the 
nine deceleration manoeuvres (b =1.83 m/s2).

4.4 Normal driving conditions

After obtaining the initial estimates for the parameters, the last calibration step consists 
of finding the full set of parameters that provides the best fit when following a leading ve-
hicle through a sequence of urban roads. Under real conditions, there are several events 
that affect the driver behaviour (pedestrian jaywalking, avoiding potholes, late reaction to 
the green light, etc.) that cannot be easily represented by the IDM. This way, to prevent the 
optimization from returning unrealistic values, the following lower and upper bounds were 
defined, Table 2.

Table 2  Lower and upper bounds for the parameters for normal driving conditions 

The optimization procedure was run for segments of 90 – 120 s. Figure 5 compares the pre-
dicted and real trajectories of the follower vehicle, for one of those segments (west part of 
the section 2-3). The optimization returned the values a = 2.97 m/s2, b = 3.71 m/s2, δ = 3.08, 
s0 = 4.95 m and T = 1.48 s. The desired velocity was manually set as v0 = 15.3 m/s. On other 
segments, the calibration returned significantly different optimal values.

Figure 5 Filed vs predicted velocity profile for normal driving conditions

5 Conclusions

The proposed method to obtain trajectory data relies on equipment that most research 
teams can afford (<2500€) and that can be easily installed on any vehicle under any driving 
environment. However, drivers are aware that they are being part of an experiment, which 
can change their behaviour. 

a 
[m/s2]

b
[m/s2] δ s0

[m]
T

[s]
v0

[km/h]

Lower bound 0.9 0.7 1.9 2.0 0.5 Var.

Upper bound 3.0 4.3 5.8 5.0 1.5 Var.
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The sequential calibration method allows to identify reasonable values for the parameters 
being calibrated. Simple driving manoeuvres can be accurately represented by the IDM. 
Good adjustments were also obtained for normal driving scenarios in short route sections, 
but sometimes at cost of using parameter values close to their lower or upper bounds. This 
suggests that the optimization may be returning unreasonable estimates, leading to an over-
estimated model with limited capacity to describe the driver behaviour under a different road 
environment. 
This way, additional work is required to understand how the parameters affect the model 
results and its transferability, and how to deal with intra-driver variability. It will also be nec-
essary to further process and filter the raw data, to exclude all incidents that the IDM cannot 
represent.
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