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Abstract

A bridge inspection needs a lot of costs. It causes a lack of engineers and budget. So, some 
local governments couldn’t complete the bridge’s aggressive preventive maintenance in Ja-
pan. Recently, deep learning-based damage detection methods have been studied by many 
researchers to reduce the cost of the bridge’s aggressive preventive maintenance. This kind 
of method could detect the damage to the bridge by photo image with a detection model 
which has been trained with a large training dataset. In contrast to the increase in dataset 
size, the effectiveness of the quality of training data is not discussed enough. In this paper, 
the ratio of negative samples in the training data is regarded as the quality of training data.
In this study, we targeted the automatic detection process of the rebar exposure and the 
peeling on the surface of bridges. The effects of the ratio of the negative example data in 
a training dataset have been evaluated. In this study, the negative sample means the an-
notated data with no target damage. The negative sample image is the part of a bridge but 
does not include target damages. Many previous studies generate this kind of image when 
generating annotation data from real bridge photo images, but do not utilize it. A three-fold 
cross-validation method has been adopted to keep the robustness of the detection. The sev-
en different detection models have trained with seven different training dataset which has 
different negative sample ratios. As a result of comparing the detection results of each mod-
el, the influence of the negative example data on the training data was confirmed. There was 
a peak of the recall curve in the middle of increasing the negative sample ratios. The correct 
negative sample ratio could improve the accuracy of damage detection.
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1 Introduction

In Japan, there are about 730,000 bridges with a length of 2 m or longer, and many of these 
were built during a period of high economic growth. It is expected that the number of such 
old bridges would increase in the future. Therefore, their rebuilding and the extension of 
their service life must be considered [1]. An owner of a bridge is required to monitor a bridge 
with close visual inspection per 5 years according to the national criteria in 2014 in Japan [2]. 
However, it is expected difficult to continue a close visual inspection method in the future 
for some problems. For example, this method needs high cost, a lack of an engineer for the 
bridge inspection, and a lack of budget for the maintenance. There are many studies for solv-
ing these problems by proposing a low-cost maintenance method, an efficient maintenance 
method, and so on.
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An image processing-based automatic damage detection is one of the solutions. There are 
26 kinds of damage that would be considered for bridge inspection in Japan [2]. Most of 
these damages are confirmed with visual inspection by an inspection engineer. Therefore, 
an image processing-based automatic damage detection method could be an alternative 
method. For example, a crack is detected by a visual inspection of an inspection engineer. 
They measure appearance points, shape, wide, and length of cracks. An inspection report 
stores this information. Some previous studies could detect a part of cracks [3, 4]. Recently, 
deep learning-based has been proposed and could detect cracks with high accuracy [5, 6, 
7]. A deep learning-based image processing method is adapted for the detection of other 
damages. An automatic detection method has been proposed for erosion, palling, rebar ex-
posure, leakage, and so on [8, 9]. Some studies use UAVs to take a photo for an input image 
of the deep learning-based automatic damage detection method [10, 11].
In general, a deep learning-based method needs a huge size dataset to train the model to 
detect the target well. The content of the dataset depends on the task. One of the major dam-
age detection methods is the semantic segmentation method. This method receives image 
data as input data and outputs image data making the target damage area with pixel unit. 
In this case, the dataset is pair of data: raw image data and the mask image cover the target 
damage area on the raw image. This method can accumulate detection, but the cost of data-
set generation is high.
Augmentation methods such as rotation, flipping, and scaling are often used to generate 
huge scale datasets when training data is small scale in many previous studies. However, 
augmented images by such methods have a similar feature. In general, a well-work deep 
learning model needs not only the amount of data but also needs the variation and the qual-
ity of images. Noise data is regarded as a part of the quality of training data in this paper. 
Noise data is important to train a robust model in some cases. But a discussion about the 
noise ratio in the training data is not enough in the damage detection field.
In view of the features, all bridges are different from each other in Japan. This means that 
bridges have different surfaces, scales, structures, the circumstance surrounding the bridge, 
and so on. Some bridges are located difficult to take a picture of. It is difficult to take a picture 
with stable quality. These pictures include noise such as the background. These facts cause 
low detection accuracy. One of the solutions to this problem is adopting negative sample 
data as training data for the detection model could distinguish damage and noise with more 
accuracy. 
In this paper, the effects of the ratio of a negative sample in training data have been evalu-
ated. A semantic segmentation method has been adopted to detect the rebar exposure and 
the peeling. The evaluation adapts the cross-validation method to keep the robustness of 
the evaluation and the effect of the ratio of negative sample data.
The training data use real photo images of a bridge. In general, these picture image size is 
larger than the input size of a deep-learning model. In ordinary, these picture images are 
clopped or scaled into the input size of a deep-learning model. When splitting an image, 
there are two kinds of images: target damage image and not including target damage image. 
A not including target damage image is regarded as noise data. But, these noise data are part 
of a bridge image. These images may be useful to distinguish between an image of damage 
and an image of no damage. These data have been set as a negative sample for training the 
deep-learning model in this paper.
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2 Related works 

A semantic segmentation method could detect the target object in an input image and output 
the masked image with the pixel unit [12-14]. The pixel unit output enables us to not only know 
a damaged position but also calculate real damage size using shooting range, focus range, and 
so on. Li et al. evaluated the detection of some damage: crack, peeling, and so on. They adapt-
ed FCN [13] and SegNet [14] as a semantic segmentation model [15]. The evaluation set real 
constructure as a target and take test photo images twenty centimeters from the target damage 
area. A pre-trained model have used when training the deep-learning model in many cases. 
These models have trained with large-scale datasets for a different task at first. The fine-tuning 
method or the transfer learning method trains these models with another dataset optimized for 
a current task. Nakajima et al. [15] have evaluated the rebar exposure detection method using a 
model trained with transfer learning. They adapt famous networks such as FCN, SegNet, and so 
on. They used a pre-trained model which had been trained for an image classification task and 
compared the result of each model. They used 208 pictures taken while close visual inspection 
as training and test data. This evaluation shows that a semantic segmentation method does 
not need training image data taken by the same filming condition.

3 Evaluation method

In this paper, the SegNet model has been adopted as a detection model for rebar exposure 
and peeling. This model needs more small cost to train model than the FCN model. As an 
evaluation method, seven models were trained with seven datasets that have a different 
ratio of the negative samples and the results of the detection of each model have compared.

3.1 Deep learning model

The SegNet model has trained with transfer learning. A classification model VGG16 trained 
by the ImageNet dataset. The ImageNet dataset has more than one hundred million images 
classified into one thousand classes. This model has been adopted as a pre-trained mod-
el for transfer learning for training the SegNet semantic classification model. As a result of 
pre-examination, the multi-class semantic segmentation method frequently detects the re-
bar exposure damage as the peeling, the binary semantic segmentation models have been 
trained: detect only rebar exposure and detect only peeling.

3.2 Dataset 

As evaluation data, 179 photo images of the bridge including the rebar exposure and the 
peeling in a bridge inspection record has used. To train the models, the rebar exposure only 
annotated datasets and peeling only annotated datasets has generated from the evalua-
tion data. The annotated data generated by masking the rebar exposure area is red and the 
peeling black color at first. The rebar exposure annotated data was made by converting it 
from a black-colored area to white and converting from a red-colored area to black. The peel-
ing annotated data was made by converting it from a red-colored area to white (Fig. 1). As 
each photo images are a different size and not suitable for SegNet model input, all images 
have been split into small size images (height is 224 pixels, width is 224 pixels). If a frac-
tion exists, crop 224 pixels from the right or 224 pixels from the bottom of the image. As an 
example, Fig. 2 shows five images including peeling, one image including rebar exposure 
and one negative sample image from one photo of the bridge inspection record. To improve 
robustness, a three-fold cross-validation method had adopted. Table 1 shows the description 
of the dataset of each case. 
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Figure 1 An example of an annotation converted to binary annotation (a: raw image, b: rebar exposure and 
peeling annotated image, c: only rebar exposure annotated image, d: only peeling annotated image)

Figure 2 An example of a split annotated image (a: raw image, b: peeling annotation, c: rebar exposure 
annotation, d: negative sample image) 

Table 1  Training data of each cross-validation case

This table shows that the average ratio of the rebar exposure including images is about 22 
% (negative sample is about 78 %), and one of the peelings including images is about 35 % 
(negative sample is about 65 %). The number of datasets for training the model is seven: 
annotated image only dataset, five datasets including a random sampled negative sample 
with fix ratio to damage including data (from 10 % to 50 % increase by 10), the dataset using 
all split images.

3.3 Evaluation method

Each model has been evaluated by comparing the result of damage detection by calculat-
ing precision and recall. Precision means the ratio of correct detected damage pixels. Recall 
means the ratio of detected damage pixels occupies a correct damaged area. High precision 
means the model could detect damaged areas with little not damaged areas. High recall 
means the model could detect damaged areas with little miss damaged areas. eqn. (1) is a 
formula of precision. eqn. (2) is a formula of recall.

Case 1 Case 
2

Case 
3

The number of original training images 119 119 120

The number of images after splitting 1718 1751 1791

The number of annotated images in the rebar exposure image after splitting 392 405 389

The number of annotated images in detached images after splitting 596 627 607

Precison =  (1)

The number of pixels detected by the model as the damage to be detected
that were correctly detected as damage to be detected

The number of pixels detected by the model as the damage
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4 Evaluation

The precision of the detection results for rebar exposure and the recall are shown in Table 
2 and Table 3. The precision of the detection results for peeling and the recall are shown in 
Table 4 and Table 5. A red-colored value in each table means the highest value between each 
model in each case. Model 1, indicated by the columns in the table, is the model trained us-
ing only the annotated images; models 2 to 6 are the models trained using all the annotated 
images and the negative example data randomly extracted so that the negative example 
data account for 10 % to 50 % of the training data; model 7 is the model trained using all the 
data after splitting. The numbers colored red in the table represent the highest values of the 
models compared within each cross-validation. Fig. 3 shows the average values of the three 
cases for each model in Table 2-5. 

Table 2  Precision value of detection of rebar exposure

Table 3  Recall value of detection of rebar exposure

Table 4  Precision value of detection of peeling

Table 5  Recall value of detection of peeling

Case Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

1 0.279 0.274 0.274 0.272 0.343 0.347 0.351

2 0.320 0.307 0.338 0.344 0.304 0.362 0.384

3 0.197 0.326 0.296 0.265 0.278 0.305 0.321

Case Model 1 Model 2
Model 3
0.280
0.191
0.267

Model 4 Model 5 Model 6 Model 7

1 0.250 0.257 0.392 0.197 0.178 0.215

2 0.195 0.219 0.299 0.247 0.249 0.161

3 0.353 0.197 0.284 0.266 0.201 0.197

Case Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

1 0.403 0.328 0.398 0.402 0.409 0.428 0.465 

2 0.301 0.384 0.335 0.372 0.339 0.389 0.413 

3 0.313 0.340 0.329 0.374 0.327 0.373 0.407 

Case Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

1 0.506 0.620 0.612 0.541 0.563 0.461 0.426 

2 0.637 0.545 0.686 0.567 0.606 0.524 0.485 

3 0.621 0.676 0.618 0.565 0.638 0.561 0.498 

      Recall =  (2)

The number of pixels detected by the model as the damage to be
detected that were correctly detected as damage to be detected

The number of pixels of damage to be detected
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Figure 3 An average value of precision and recall of the three cases for each model of rebar exposure and 
peeling detection

The results shown in Table 2, Table 3, and Fig. 3, increasing the ratio of negative examples in 
the dataset during the training of the detection model improves the precision of the detec-
tion of rebar exposure by up to 12.9 % and the recall by up to 14.2 % compared to the results 
of the model without negative examples. The performance of both precision and recall tends 
to improve as the ratio of negative examples is increased. However, while the precision im-
proves as the ratio of negative examples is increased, the recall is highest for model 4, and 
decreases as the ratio of negative examples is increased further. This result can be attributed 
to the fact that increasing the number of negative examples allows the detection model to 
more accurately distinguish between rebar exposure and rebar exposure-like areas, but the 
conditions for determining rebar exposure become more restrictive, making it more difficult 
to detect rebar exposure. In the detection model with a small ratio of negative examples, it 
is easy to detect false positives such as concrete joints and rusted metal parts of pipes, etc. 
In the model with a large ratio of negative examples, detection omissions are more likely to 
occur due to the color of the exposed steel bars.
From the results shown in Table 4, Table 5, and Fig. 3, the precision and recall are improved 
by up to 11.2 % and 11.4 %, respectively. In the same way, increasing the number of negative 
examples improved the precision of peeling detection, and it was confirmed that there was a 
tendency for a peak in the ratio of negative examples to improve the recall. A detection model 
has trained with a small ratio of negative examples tends to detect discolored areas incor-
rectly, while a model has trained with a large ratio of negative examples can only partially 
detect delaminated areas, resulting in detection omissions. These results indicate that the 
ratio of negative examples in the training data of the detection model affects the detection 
performance even for pixel-by-pixel damage detection. It was also shown that it is effective 
to set the ratio of negative cases at 20 % to 30 %, rather than simply achieving equilibrium.

5 Conclusion

In this paper, the effect of the ratio of negative examples in the training data during model 
training on the damage detection method for bridges using deep learning has been evaluat-
ed. In the evaluation, the pixel-by-pixel damage detection models have been created. These 
models have been trained with different ratios of negative examples for peeling and rebar 
exposure: and the detection results were compared to each other for the evaluation. The 
results of the three-fold cross-validation test indicated that the precision and recall of the 
training of the damage detection model were best improved by setting the ratio of negative 
cases in the training data to 20 % to 30 %, instead of simply setting the ratio to equilibrium.
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However, the ratio of negative cases in the training data, which is the peak of the improve-
ment in the reproduction rate, is different for each detection target. We will also evaluate the 
remaining detection targets of the 26 types of damage in bridge inspections in the future.
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