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Abstract

Conventional close visual inspection of bridges has high cost and lack of skilled engineers. 
New technologies, such as AI, UAV, and robots, can be provided to help the inspection pro-
cess and substitute previous inspection methods to save labor effort and reduce costs. We 
develop damage detection system for bridge inspection by adopting image recognition 
technology based on deep learning. It detects damage from bridge images and provides the 
accurate outline. Such technology can reduce inspection work by detecting the damage in-
stead of inspectors, and they can focus on important tasks such as damage determination. 
However, it takes a lot of time to collect and annotate for training images. Although linear 
damage such as cracks requires a fine outline for each pixel, planar damage such as free 
lime is presumed to be allowable even at low precise boundaries. If low precise boundaries 
are allowed, training data is obtained in less time. To determine damage with the same ac-
curacy as close visual inspection, the limits of allowable low precision display need to be 
determined. This study examined the limis of low precise boundaries for free lime. The bridge 
engineers compared with the detection output of gradually reduced precision boundaries 
and investigated the limits of the low precision they allow.
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1	 Introduction

About 720, 000 bridges have been constructed in Japan, and most of them were constructed 
in the high economic growth period and are getting old. In 2030, about 55 % of bridges will 
be more than 50 years old [1]. In order to reduce the life cycle cost by the maintenance of 
bridges, the national government established the guideline that municipalities conduct the 
close visual inspection once in 5 years from 2014. However, it is difficult to conduct contin-
uous close visual inspection for municipalities that are insufficient in financial and human 
resources. Therefore, the damage detection using the deep learning is expected as an alter-
native technique of the close visual inspection [1]. 
The automatic detection system of bridge damage was developed using image recognition 
by deep learning. This automatic detection system organizes information necessary for di-
agnosis such as damage area, crack width, and length in advance. As a result, the work of 
bridge engineers is reduced, and they can focus on diagnosis. However, it takes a lot of time 
to collect and annotate images for training. Because every pixel in the image requires to be 
annotated. Especially, the crack needs to be measured its width and length in the fineness 
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in pixel unit [2]. Therefore, in many studies, crack is detected in pixels [3-6]. Free lime is one 
of the damages that occurs with cracks. Free lime indicates inner degradation of concrete 
[7]. However, according to the procedure of national government in Japan, there is no meas-
urement value for the area of damage classification of free lime (Table. 1). Thus, even if the 
detection outline of free lime is low precise per pixel, it is considered that engineers can 
determine the damage.

Table 1 	  Damage classification of free lime and leakage

Figure 1	 Differences in display in pixel or mesh units (for free lime) 

As shown in Fig. 1, in detection per pixel, an accurate outline is provided, but it takes a lot of 
time to annotate each pixel for training data. On the other hand, boundaries with low preci-
sion can reduce annotation work. However, as the detection of free lime, the precision such 
as pixel unit or mesh unit and the saving of datasets work have not been sufficiently studied. 
Therefore, the assessment of low precision detection output by bridge engineers was inves-
tigated. The output of the mesh display reproduces the low precision boundaries. First, the 
bridge image was divided into specific mesh sizes, and then the mesh containing free lime 
was defined as a detection area (Fig. 1). Then, each image detected by pixel unit and mesh 
unit of free lime was shown to the bridge engineers, and the assessment was examined.

2	 Purpose

Previous studies have detected free lime in bounding box, polygons, and segmentation [8-
12]. The bounding box can prepare the datasets more easily than the segmentation, but the 
outline is unclear. On the other hand, segmentation is an accurate outline, but it takes a lot 
of time to annotate and prepare the datasets. 
We have developed an automatic damage detection system [13] for bridge engineers to diag-
nose appropriately. It is considered the boundaries of the detected objects need to be pro-
vided suitably for bridge engineers. However, it has not been examined how precise bound-
aries are necessary for bridge engineers to detect free lime. If the engineer does not require 
a high precision outline, the detection of per-mesh is allowed instead of per-pixel such as 

Classification Damage condition

a No damage.

b -

c There is leakage from crack and little rust or free lime.

d There is free lime from the crack and little rust.

e There is significant leakage and free lime from the cracks. The water leakage contained 
a large amount of mud and rust.
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segmentation. The cost of datasets work is reduced by annotating with polygons rather than 
per pixel.
This study investigates the precision of detection boundaries required by bridge engineers to 
improve the efficiency of annotation work of datasets for training. The proportion of free lime 
in the detection area is calculated, and the accuracy of boundary detection, which allows the 
engineers to diagnose the damage, is assessed.

3	 Building an automatic detection model of free lime

The automatic detection model of free lime was built that can change the precision of the 
output display by detecting pixel and mesh units.

3.1	 Datasets

The datasets of the detection model collected 112 free lime images from bridge inspection 
records in K prefecture. The collected 112 images were annotated with free lime in pixel units, 
92 images were used as training data, and 20 images were used as test data. 92 training data 
were image edited such as inversion, enlargement, reduction, rotation, and movement, and 
the number of training data was increased to 920.

3.2	Building a free lime detection model

The image recognition technology used for the automatic detection of free lime is DeepCrack 
[14] which is one of semantic segmentation. Semantic segmentation is a technique that ena-
bles to identify objects in an image. This method performs feature extraction based on con-
volutional neural network (CNN) and estimates the area in pixel units. Using the pre-trained 
model, the image area is automatically estimated as “free lime area” and “non-free lime 
area”. The detection threshold for free lime was set to detect a pixel with a probability of free 
lime more than 1 %. The detection result of the test data is shown in Fig. 2.

Figure 2	 Detection result of free lime by deep learning 

4	 Examine the precision of boundaries of detection results

Output images of low precision detection of free lime boundaries were generated. The bridge 
engineers compared these images to assess which detection result was the lower limit of 
allowable precision when they determined the damage from the images.

4.1	 Method

Using the free lime model constructed in Chapter 3, the detection output of free lime was 
displayed in pixel and mesh. In the mesh unit detection, the whole image is divided by a 
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specific mesh size, and if the mesh includes pixels determined as free lime, the mesh is de-
tected as the free lime region mesh. The detection mesh size was varied from 10 pixel mesh 
to 100 pixel mesh for every 10 pixels, and the mesh containing free lime was painted red (Fig. 
3). The 10 free lime images were edited in the same way. The size each of the 10 images were 
about 920 × 715 pixels.

Figure 3	 Image displayed the detection result by varying the mesh size 

Even if the mesh size is the same, the proportion of the free lime region included in the de-
tection mesh region is different depending on the image. The proportion of free lime in the 
mesh is expected to affect the engineer’s allowance. In addition, when the resolution of the 
image is changed, the size of the detection display mesh needs to be changed. Therefore, 
as an index that can be compared even if the image size or output mesh size changes, “Free 
lime proportion”, which free lime occupies in the detection mesh, was calculated according 
to Equation (1). The free lime proportion of all 10 free lime images is shown in Fig. 4.

Free lime proportion 
in the detection mesh =

Number of pixels of free lime
Nuber of pixels in the detection mesh

(1)

Figure 4	 Free lime proportion at the detection mesh size 

Even with the same detection mesh size, free lime proportion varied depending on the im-
age. Images taken from a close distance have a high proportion of free lime even if the mesh 
size was large, and images taken from a distance have a low proportion of free lime even if 
the mesh size was small. A common feature of all images is that the larger the mesh size, the 
lower the proportion. The 25 bridge engineers were shown images 1 ~ 10 of various detection 
mesh sizes to and assessed the images with the lowest precision to determine damage.
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4.2	Results of the survey

Fig. 5 shows the survey result of the detection mesh size allowed by engineers. As a cause of 
the variation of the allowable mesh size by the image, it is considered the difference of the 
free lime proportion and images taken in the different environment.
Then, the relation between the free lime proportion and the allowable proportion of engi-
neers for each detected mesh size was examined. Fig. 6 shows the allowable proportion of 
engineers to the free lime proportion.

Figure 5	 Allowable proportion of engineers for each detected mesh size 

Figure 6	 Allowable proportion of engineers to free lime proportion 

Images with a lower proportion of free lime were highly variable. For example, in image 8, 25 
% free lime proportion was allowable by more than 80 % of engineers, whereas in image 6, 
even 70 % free lime proportion was allowable by less than 80 % of engineers. In common, 
when the proportion of free lime was over 75 %, about 90 % of engineers tended to allow.

5	 Conclusions and future work

In this study, free lime was detected using deep learning and the limits of low precision de-
tection boundaries that bridge engineers could diagnose was examined. The output results 
were displayed with different detection mesh sizes and the correlation between the propor-
tion of free lime and the bridge engineer’s assessment was investigated.
As a result of the survey to the bridge engineers, when the free lime proportion of the detec-
tion result was 75 % or more, about 90 % of the engineers were able to determine the dam-
age classification. This suggests that more than 75 % of the free lime proportion is sufficient 
for the output display of the detection result. In other words, the most accurate contour de-
tection per pixel is not required for free lime. Instead of annotating every pixel in the training 
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datasets, it seems sufficient to annotate polygons. Annotations with a 75 % free lime propor-
tion save time and cost on training datasets. As datasets are prepared more efficiently, the 
number of data sets can be increased, and the accuracy of the detection model improved. 
However, the analysis in this study included only a limited number of survey results and free 
lime images. In future, in order to improve the accuracy of the survey result, it is necessary 
to increase the sample number and to conduct further surveys using images adjusted for the 
conditions of the shooting environment.
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