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Abstract

The stop dwell time can be modelled by using the volumes of boarders and alighters, and it 
is a common conclusion that the use of additional information on the number and width of 
doors, number of seats, and number of through standees in model creation improves its es-
timation of stop dwell time. However, such an approach demands detailed knowledge and/
or assumptions on passenger distribution both inside the vehicle and on the stop platform, 
which makes the model creation and its application more challenging. The research pre-
sented in this paper is focused on the passenger input data requirements for the creation of 
tram stop dwell time prediction models. It is based on passenger and tram dwell time data 
collected at an island tram stop in Zagreb. The data acquisition included the field record-
ing of the trams in operation during five working days, laboratory processing of 70 hours 
of collected video data, and creation of a synthesized database of observed and measured 
data. Three different multiple linear regression models for tram dwell time prediction were 
created, with the following independent variables: (1) the volume of boarders and alighters 
and a type of passenger flow transiting through the busiest tram doors, (2) the volume of 
boarders and alighters transiting through the busiest tram doors, and (3) the total volume of 
boarders and alighters per tram. The cross-validation of the model showed that passenger 
input data simplification has a minor effect on the model’s goodness of fit, and a mild effect 
on it’s accuracy and precision, which could be adequately addressed by the application of a 
larger operating margin.

Keywords: island stop, passenger volume, passenger flow, alighters, boarders

1 Introduction

The stop dwell time is defined as the difference between the public transport (PT) vehicle 
departure and arrival times. The arrival time is defined as the time when the vehicle changes 
its state from moving to standing still, and vice versa for the departure time. There are at 
least five processes between the arrival time and the departure time: door unlocking, door 
opening, passengers alighting and boarding, door closing, and vehicle dispatching [1]. The 
stop dwell time prediction is a major issue in urban PT vehicle travel speed modelling, used 
for the definition of travel time and timetable creation. This is due to numerous stop dwell 
time influential factors, variable both in space and time, like passenger flow, vehicle and 
stop design characteristics, and traffic organization. This problem is especially pronounced 
on high-frequency and high-ridership PT systems, with long routes, and consecutive stops 
that are relatively close to one another [2], such as tram systems.
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According to [3], models for the prediction of urban PT travel time can be grouped as (1) mod-
els based on historical data, i.e., on the observation that dwell times are repeatable between 
days, at the same time of the day, and the same day of the week, or (2) statistical models 
based on regression analyses which use several identified influential factors as independent 
variables and make a prediction based on their statistic distributions and correlations. His-
torical data models rely on average values in previous days as a prediction factor and there-
fore are reliable only when the traffic patterns are relatively constant. On the other hand, the 
precision of the regression models depends on all the variables that need to be recognized 
and incorporated into the model. Therefore, research of different sources of model’s uncer-
tainty, especially regarding the passenger traffic impact on PT stop dwell time [4] is ongoing. 
As passengers are not distributed uniformly on the platform [5] or in the vehicle [6], most 
models define stop dwell time as the maximum time needed at one vehicle door for passen-
gers to alight and board (passenger flow time) plus additional fixed time consisting of doors 
opening and closing time and an operating margin [7]. Operating margin considers all factors 
that are variable both in space and time, i.e., variations in passenger volumes, and devia-
tions from the timetable. This is the extra time added to a line’s headway to allow for irregular 
operation and ensure that one vehicle does not delay the following one. According to [8], it 
is suggested that a range from 10 s to 30 s should be considered for the operating margin for 
tram stops. It should be lower the higher the frequencies of the vehicles are. When capacity 
is not an issue, 25 s or more is recommended. The operating margin can be reduced to 20 
s or even 15 s if it is necessary to provide sufficient service to meet the estimated demand. 
The passenger flow time (the time passengers need to board and/or alight) depends on the 
number of passengers transiting through the busiest doors, the type of their flow, and tram 
type defining the number of channels per door and floor height [7, 8]. 
Previous research has shown that the use of additional information on the number and width 
of doors, number of seats, and number of through standees in model creation improves its 
estimation of stop dwell time [9]. However, such an approach demands detailed knowledge 
and/or assumptions on passenger distribution both inside the vehicle and on the stop plat-
form, which makes both the model creation and its application more challenging. The re-
search presented in this paper is focused on the influence of the passenger input data com-
plexity on the accuracy and precision of statistical multiple linear regression (MLR) models 
for tram stop dwell time prediction. The investigation is based on passenger and tram dwell 
time data collected at an island tram stop in the City of Zagreb and is performed to answer 
the question of whether the tram stop dwell time can be adequately estimated only by the 
total number of boarders and alighters per stopped tram. 

2 Data acquisition and sample creation

The tram network in the City of Zagreb consists of a total of 58 km of double, 1.000 mm gauge, 
tracks (excluding the tracks in two tram depots). The network contains 18 tram turnarounds, 
nine of which are PT terminals, and 240 single and 18 double tram stops. 50 % of the tracks 
are located inside the street carriageway, adjacent to the sidewalks which are used as plat-
forms for 40 % of the stops. Along city avenues, tracks are laid in separate central corridors, 
and stop platforms are constructed as elevated islands, usually far side larger street inter-
sections. Tram transport is organized through 15 daytime (4 a.m.–12 a.m.) and four night-
time (12 a.m.–4 a.m.) lines in a total length of 216.5 km. 266 trams of 6 different construction 
types annually transport more than 190 million passengers [10]. 
During investigation location scouting it was decided to research an island stop platform 
where stop operations will not be affected by individual car traffic, and there will be no inter-
ference between tram passengers and pedestrians. The chosen tram stop is located on the 
southern edge of the city centre. As it is situated near several higher education institutions 
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it is used mostly by younger passengers, randomly arriving during the day, so distinctive 
passenger boarding or alighting peak volume hours were not expected. The passengers ap-
proach the platform on the far end of the stop sign via the crosswalk. The distance between 
the stop and the nearest downstream signal is 85 m, so it was presumed that the tram dwell 
time won’t be affected by it.
The measurements at the selected stop included the field recording of the trams in operation, 
laboratory processing of collected video data, and creation of a synthesized database of ob-
served and measured data. Measurements were conducted in October 2020 during five work-
ing days, Monday to Friday. It should be emphasized that the research was conducted during 
COVID-19 restrictions in the form of limiting the number of passengers in the vehicle to 40 % of 
the maximum vehicle occupancy, and a ban on purchasing the tickets from the driver. 
The recording of the tram vehicles operation and passenger exchange on the stop was per-
formed by Miovision Scout devices, mounted on a stop sign. The recording on each day last-
ed from 6 a.m. to 8 p.m., during which a total of 70 h of video material was recorded. Labo-
ratory data processing included the video material analysis and the collection of data on the 
tram vehicle type, arrival and departure time at the tram stop, and the number of passengers 
boarding (PD, B) and alighting (PD, A) the tram through a specific door (D). The collected data 
were combined into a single database. The database analysis showed that out of 935 record-
ed trams that served the stop, 66 % of them were the high-floor, four-doors TMK301 type tram 
vehicles with the door opening and closing time of 3 s. To ensure the sample representative-
ness, it was decided to continue the investigation by considering only the TMK301 tram data.
Furthermore, two-step data filtering was performed. In the first step, the recordings with no 
passenger exchange (PD, B = PD, A = 0) were eliminated from the sample. In the second step, 
the dwell time of each TMK301 tram (td, o) was calculated as the difference between recorded 
tram departure and arrival time. The mean and standard deviation of the dwell time sample 
was used as a cut-off for identifying outliers: dwell time values more than three standard 
deviations away from the sample mean were excluded from further analysis. The resulting 
changes in the data sample size and five-number descriptive statistics for observed tram 
stop dwell time are given in Table 1. 

Table 1  Observed dwell time (td, o) statistics [11]

The filtered sample contains data on 4,762 passegers. The ratio between boarding and 
alighting passengers is 40:60. The hourly distribution of the counted passengers and trams, 
defined after the filtering process and presented in Figure 1 (left), shows that the alighters 
volume (PA) is evenly distributed between 7 a.m. and 4 p.m., boarders (PB) are more frequent 
in the afternoon period, and tram frequency is lower between 11 a.m. and 2 p.m. As it can be 
seen from Figure 1 (right), the latter has a direct influence on an increase in the average value 
of observed dwell time (td, o) during these hours.

td, o statistics Raw data Filter 1 applied Filter 2 applied

Sample size 595 580 571

Average [s] 12.8 12.8 12.5

Standard deviation [s] 4.9 4.9 3.9

Minimum [s] 4 5 5

1st Quarter [s] 10 10 10

Median [s] 12 12 12

3rd Quarter [s] 15 15 15

Maximum [s] 60 60 26
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Figure 1 Passenger and tram volumes (left) and average observed dwell time values (right)

The filtered tram stop data was divided into training and test sample (in ratio 80:20) to 
cross-validate the LRM models. The test sample was created by excluding every fifth tram 
stopping observation from the total sample. The ratio of boarding and alighting passengers 
in both training and test sample remained 40:60.

3 Stop dwell time modelling and model validation

Three different MLR models were created by using the training sample passenger data as 
independent variables, and observed tram dwell time as a dependent variable. The models 
differ according to the input passenger data complexity.
The first model (MLR-DF) uses the training sample volumes of alighters and boarders trans-
iting through the busiest tram doors (PD, A and PD, B) and calculates the passenger’s time to 
board and/or alight depending on the type of passenger flow. The flow is classified as mainly 
alighting (70 % or more passengers alighting), mainly boarding (70 % or more passengers 
boarding), or mixed (all other situations) [8]. Model for mainly alighting passengers (A) is 
given in Eq. (1), for mainly boarding passengers (B) in eqn (2), and for mixed passenger flow 
(M) in Eq. (3).
 td, m, MLR-FD(A) = 8.6 + 0.9 PD, A + 1.5PD, B (1)

 td, m, MLR-FD(B) = 7.8 + 0.8 PD, A + 1.3PD, B (2)

 td, m, MLR-FD(M) = 7.9 + 1.0 PD, A + 1.7PD, B (3)

The second model (MLR-D), given in eqn (4), was created by neglecting the type of passen-
ger flow and including only the volumes of alighters and boarders through the busiest tram 
doors (PD, A and PD, B).

 td, m, MLR-D = 8.2 + 1.0 PD, A + 1.3PD, B (4)

The third model (MLR-T), given in eqn (5), was created by including only the total number of 
passengers boarding and alighting per tram (PT, A and PT, B).

 td, m, MLR-T = 8.5 + 0.4PT, A + 0.6PT, B (5)
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All models predict a larger influence of boarding passengers on high-floor tram TMK301 dwell 
time and an operating margin of around 5 s. As it can be seen from the “goodness of model 
fit” data, given in Table 2, simplifying the input data in the form of neglecting the traffic flow 
type and busiest doors during model creation did not affect the accuracy of the model.
The LRM models were then applied to the test sample data to cross-validate their results. 
The comparison of the model’s accuracy and precision was made concerning the modeled 
results, i.e., predicted dwell time values differences, from the observed dwell time values 
of the test sample (td, o - td, m). Figure 2 presents scatter plots of dwell time values in which 
the bubble size represents the passenger volumes, and a black line represents the identity 
line between the observed and calculated dwell time values. The distribution of MLR mod-
el errors (differences between observed and by models calculated values) is presented by 
boxplots in Figure 2, and by five-number descriptive statistics for errors given in Table 3. 
In general, scatter plots in which the values are more centered around the identity line are 
considered more accurate, and box plots that show less spread are considered more precise.

Table 2  Regression statistics

Figure 2 Scatter plots of observed and calculated dwell time values around the identity line (bubble size 
presents the number of passengers) and a box plot of model errors distribution for the test sample

Model Correlation 
coefficient 

Coefficient of 
determination Standard error Observations

MLR-FD (A) 0.58 0.34 2.73 186

MLR-FD (B) 0.71 0.50 2.79 93

MLR-FD (M) 0.65 0.42 3.17 178

MLR-D 0.65 0.43 2.93 457

MLR-T 0.66 0.44 2.90 457
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Table 3  Distribution of MLR model errors 

4 Conclusions

Presented investigation of the tram stop dwell time at the City of Zagreb electric tram network 
is the first step in reducing the uncertainty of traffic modelling of this specific PT system. Fol-
lowing the analysis of the spatial and traffic characteristics of the entire network, an island 
tram stop on the southern outskirts of the City of Zagreb centre was identified as an optimal 
investigation location. The measurements at the selected stop included the field recording 
of the trams in operation, laboratory processing of collected video data, and creation of a 
synthesized database on the tram vehicle type, arrival and departure time at the tram stop, 
and the number of passengers boarding and alighting the tram through a specific door. 
To increase the representativeness of the results, statistical analysis and two-step filtering 
of records collected for the high-floor 4-doors tram vehicle type TMK301 were performed. The 
filtered tram stop data was divided into training and test sample (in ratio 80:20). The training 
data sample was used to create three different MLR models for tram dwell time prediction, 
with the following independent variables: (1) the volume of boarders and alighters and a type 
of passenger flow transiting through the busiest tram doors, (2) the volume of boarders and 
alighters transiting through the busiest tram doors, and (3) the total volume of boarders and 
alighters per tram. 
Comparison of the MLR models regression statistics (correlation coefficient, coefficient of 
determination, and standard error) showed that passenger input data simplification has a 
minor effect on model’s goodness of fit. The model’s cross-validation showed that the re-
duction of complexity of passenger input data by using only the total number of passengers 
boarding and alighting the tram and neglecting the information on the most intense transit 
flow through specific tram doors and flow type has a mild effect on model’s accuracy and pre-
cision. This could be adequately addressed by adding 3 s, as defined by error’s interquartile 
range, to the simpler MLR-D and simplest MLR-T model operating margin. 
However, we must emphasize that these results must be taken with caution. Firstly, this in-
vestigation assumes that there is a linear relationship between tram stop dwell time and 
the number of boarders and alighters. Secondly, statistically-based dwell time models are 
created for a specific TMK301 type tram and are not generally applicable for other types of 
trams. Thirdly, to develop a more general model, not only vehicle characteristics but island 
platform conditions should be included in the analysis. For a better understanding of the 
effects on tram stop dwell time, essential for planning more accurate timetables, reduction 
of delays, and a higher quality of Zagreb’s tram services, further research including these 
parameters is planned.

td, o - td, m statistics MLR-FD model MLR-D model MLR-T model

Average [s] -0.3 0.0 0.3

Standard deviation [s] 3.1 4.4 4.5

Minimum [s] -7 -12 -11

1st Quarter [s] -2 -3 -3

Median [s] -1 -1 0

3rd Quarter [s] 1 3 3

Maximum [s] 8 13 14
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